Joint Cluster Head Selection and Trajectory Planning in UAV-Aided IoT
Networks by Reinforcement Learning with Sequential Model
- URL: http://arxiv.org/abs/2112.00333v1
- Date: Wed, 1 Dec 2021 07:59:53 GMT
- Title: Joint Cluster Head Selection and Trajectory Planning in UAV-Aided IoT
Networks by Reinforcement Learning with Sequential Model
- Authors: Botao Zhu, Ebrahim Bedeer, Ha H. Nguyen, Robert Barton, Jerome Henry
- Abstract summary: We formulate the problem of jointly designing the UAV's trajectory and selecting cluster heads in the Internet-of-Things network.
We propose a novel deep reinforcement learning (DRL) with a sequential model strategy that can effectively learn the policy represented by a sequence-to-sequence neural network.
Through extensive simulations, the obtained results show that the proposed DRL method can find the UAV's trajectory that requires much less energy consumption.
- Score: 4.273341750394231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Employing unmanned aerial vehicles (UAVs) has attracted growing interests and
emerged as the state-of-the-art technology for data collection in
Internet-of-Things (IoT) networks. In this paper, with the objective of
minimizing the total energy consumption of the UAV-IoT system, we formulate the
problem of jointly designing the UAV's trajectory and selecting cluster heads
in the IoT network as a constrained combinatorial optimization problem which is
classified as NP-hard and challenging to solve. We propose a novel deep
reinforcement learning (DRL) with a sequential model strategy that can
effectively learn the policy represented by a sequence-to-sequence neural
network for the UAV's trajectory design in an unsupervised manner. Through
extensive simulations, the obtained results show that the proposed DRL method
can find the UAV's trajectory that requires much less energy consumption when
compared to other baseline algorithms and achieves close-to-optimal
performance. In addition, simulation results show that the trained model by our
proposed DRL algorithm has an excellent generalization ability to larger
problem sizes without the need to retrain the model.
Related papers
- Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - UAV Trajectory Planning for AoI-Minimal Data Collection in UAV-Aided IoT
Networks by Transformer [8.203870302926614]
Maintaining freshness of data collection in Internet-of-Things (IoT) networks has attracted increasing attention.
We investigate the trajectory planning problem of an unmanned aerial vehicle (UAV) that is used to aid a cluster-based IoT network.
An optimization problem is formulated to minimize the total AoI of the collected data by the UAV from the ground IoT network.
arXiv Detail & Related papers (2023-11-08T17:13:19Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Muti-Agent Proximal Policy Optimization For Data Freshness in
UAV-assisted Networks [4.042622147977782]
We focus on the case where the collected data is time-sensitive, and it is critical to maintain its timeliness.
Our objective is to optimally design the UAVs' trajectories and the subsets of visited IoT devices such as the global Age-of-Updates (AoU) is minimized.
arXiv Detail & Related papers (2023-03-15T15:03:09Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
We propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF)
Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs.
We also exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks.
arXiv Detail & Related papers (2022-08-04T04:35:53Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - UAV Trajectory Planning in Wireless Sensor Networks for Energy
Consumption Minimization by Deep Reinforcement Learning [4.273341750394231]
Unmanned aerial vehicles (UAVs) have emerged as a promising solution for data collection of wireless sensor networks (WSNs)
We aim to minimize the total energy consumption of the UAV-WSN system in a complete round of data collection.
We propose a novel deep reinforcement learning (DRL) technique, pointer network-A* (Ptr-A*), which can efficiently learn from experiences of the UAV trajectory policy.
arXiv Detail & Related papers (2021-08-01T03:02:11Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
Unmanned Aerial Vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones.
Thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications.
Deep Neural Networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed on-board.
arXiv Detail & Related papers (2021-05-23T20:19:43Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.