The cell signaling structure function
- URL: http://arxiv.org/abs/2401.02501v2
- Date: Thu, 11 Jan 2024 12:30:23 GMT
- Title: The cell signaling structure function
- Authors: Layton Aho, Mark Winter, Marc DeCarlo, Agne Frismantiene, Yannick
Blum, Paolo Armando Gagliardi, Olivier Pertz, Andrew R. Cohen
- Abstract summary: Live cell microscopy captures 5-D $(xy,z,channel,time)$ movies that display patterns of cellular motion and signaling dynamics.
We present here an approach to finding patterns of cell signaling dynamics in 5-D live cell movies unique in requiring no priori knowledge of expected pattern dynamics, and no training data.
- Score: 0.16060719742433224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Live cell microscopy captures 5-D $(x,y,z,channel,time)$ movies that display
patterns of cellular motion and signaling dynamics. We present here an approach
to finding spatiotemporal patterns of cell signaling dynamics in 5-D live cell
microscopy movies unique in requiring no a priori knowledge of expected pattern
dynamics, and no training data. The proposed cell signaling structure function
(SSF) is a Kolmogorov structure function that optimally measures cell signaling
state as nuclear intensity w.r.t. surrounding cytoplasm, a significant
improvement compared to the current state-of-the-art cytonuclear ratio. SSF
kymographs store at each spatiotemporal cell centroid the SSF value, or a
functional output such as velocity. Patterns of similarity are identified via
the metric normalized compression distance (NCD). The NCD is a reproducing
kernel for a Hilbert space that represents the input SSF kymographs as points
in a low dimensional embedding that optimally captures the pattern similarity
identified by the NCD throughout the space. The only parameter is the expected
cell radii ($\mu m$). A new formulation of the cluster structure function
optimally estimates how meaningful an embedding from the RKHS representation.
Results are presented quantifying the impact of ERK and AKT signaling between
different oncogenic mutations, and by the relation between ERK signaling and
cellular velocity patterns for movies of 2-D monolayers of human breast
epithelial (MCF10A) cells, 3-D MCF10A spheroids under optogenetic manipulation
of ERK, and human induced pluripotent stem cells .
Related papers
- EM-GANSim: Real-time and Accurate EM Simulation Using Conditional GANs for 3D Indoor Scenes [55.2480439325792]
We present a novel machine-learning (ML) approach (EM-GANSim) for real-time electromagnetic (EM) propagation.
In practice, it can compute the signal strength in a few milliseconds on any location in 3D indoor environments.
arXiv Detail & Related papers (2024-05-27T17:19:02Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Higher Order Gauge Equivariant CNNs on Riemannian Manifolds and
Applications [7.322121417864824]
We introduce a higher order generalization of the gauge equivariant convolution, dubbed a gauge equivariant Volterra network (GEVNet)
This allows us to model spatially extended nonlinear interactions within a given field while still maintaining equivariance to global isometries.
In the neuroimaging data experiments, the resulting two-part architecture is used to automatically discriminate between patients with Lewy Body Disease (DLB), Alzheimer's Disease (AD) and Parkinson's Disease (PD) from diffusion magnetic resonance images (dMRI)
arXiv Detail & Related papers (2023-05-26T06:02:31Z) - 3D Mitochondria Instance Segmentation with Spatio-Temporal Transformers [101.44668514239959]
We propose a hybrid encoder-decoder framework that efficiently computes spatial and temporal attentions in parallel.
We also introduce a semantic clutter-background adversarial loss during training that aids in the region of mitochondria instances from the background.
arXiv Detail & Related papers (2023-03-21T17:58:49Z) - The Projection-Enhancement Network (PEN) [3.0464385291578973]
We propose a novel convolutional module which processes sub-sampled 3D data and produces a 2D RGB semantic compression.
We show that with PEN, the learned semantic representation in CellPose encodes depth and greatly improves segmentation performance.
We present PEN as a data-driven solution to form compressed representations of 3D data that improve 2D segmentations from instance segmentation networks.
arXiv Detail & Related papers (2023-01-26T00:07:22Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - EfficientCellSeg: Efficient Volumetric Cell Segmentation Using Context
Aware Pseudocoloring [4.555723508665994]
We introduce a small convolutional neural network (CNN) for volumetric cell segmentation.
Our model is efficient and has an asymmetric encoder-decoder structure with very few parameters in the decoder.
Our method achieves top-ranking results, while our CNN model has an up to 25x lower number of parameters than other top-ranking methods.
arXiv Detail & Related papers (2022-04-06T18:02:15Z) - Diffusion Earth Mover's Distance and Distribution Embeddings [61.49248071384122]
Diffusion can be computed in $tildeO(n)$ time and is more accurate than similarly fast algorithms such as tree-baseds.
We show Diffusion is fully differentiable, making it amenable to future uses in gradient-descent frameworks such as deep neural networks.
arXiv Detail & Related papers (2021-02-25T13:18:32Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
We present a method for the segmentation of touching cells in microscopy images.
By using a novel representation of cell borders, inspired by distance maps, our method is capable to utilize not only touching cells but also close cells in the training process.
This representation is notably robust to annotation errors and shows promising results for the segmentation of microscopy images containing in the training data underrepresented or not included cell types.
arXiv Detail & Related papers (2020-04-03T11:55:28Z) - Cylindrical Convolutional Networks for Joint Object Detection and
Viewpoint Estimation [76.21696417873311]
We introduce a learnable module, cylindrical convolutional networks (CCNs), that exploit cylindrical representation of a convolutional kernel defined in the 3D space.
CCNs extract a view-specific feature through a view-specific convolutional kernel to predict object category scores at each viewpoint.
Our experiments demonstrate the effectiveness of the cylindrical convolutional networks on joint object detection and viewpoint estimation.
arXiv Detail & Related papers (2020-03-25T10:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.