MOODv2: Masked Image Modeling for Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2401.02611v1
- Date: Fri, 5 Jan 2024 02:57:58 GMT
- Title: MOODv2: Masked Image Modeling for Out-of-Distribution Detection
- Authors: Jingyao Li, Pengguang Chen, Shaozuo Yu, Shu Liu, Jiaya Jia
- Abstract summary: This study explores distinct pretraining tasks and employing various OOD score functions.
Our framework, MOODv2, impressively enhances 14.30% AUROC to 95.68% on ImageNet and achieves 99.98% on CIFAR-10.
- Score: 57.17163962383442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The crux of effective out-of-distribution (OOD) detection lies in acquiring a
robust in-distribution (ID) representation, distinct from OOD samples. While
previous methods predominantly leaned on recognition-based techniques for this
purpose, they often resulted in shortcut learning, lacking comprehensive
representations. In our study, we conducted a comprehensive analysis, exploring
distinct pretraining tasks and employing various OOD score functions. The
results highlight that the feature representations pre-trained through
reconstruction yield a notable enhancement and narrow the performance gap among
various score functions. This suggests that even simple score functions can
rival complex ones when leveraging reconstruction-based pretext tasks.
Reconstruction-based pretext tasks adapt well to various score functions. As
such, it holds promising potential for further expansion. Our OOD detection
framework, MOODv2, employs the masked image modeling pretext task. Without
bells and whistles, MOODv2 impressively enhances 14.30% AUROC to 95.68% on
ImageNet and achieves 99.98% on CIFAR-10.
Related papers
- WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
We introduce perturbations of the class projections in the final fully connected layer which creates a richer representation of the input.
We achieve state-of-the-art OOD detection results across multiple benchmarks of the OpenOOD framework.
arXiv Detail & Related papers (2024-05-27T13:38:28Z) - Scaling for Training Time and Post-hoc Out-of-distribution Detection
Enhancement [41.650761556671775]
In this paper, we offer insights and analyses of recent state-of-the-art out-of-distribution (OOD) detection methods.
We demonstrate that activation pruning has a detrimental effect on OOD detection, while activation scaling enhances it.
We achieve AUROC scores of +1.85% for near-OOD and +0.74% for far-OOD datasets on the OpenOOD v1.5 ImageNet-1K benchmark.
arXiv Detail & Related papers (2023-09-30T02:10:54Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Improving Out-of-Distribution Detection with Disentangled Foreground and Background Features [23.266183020469065]
We propose a novel framework that disentangles foreground and background features from ID training samples via a dense prediction approach.
It is a generic framework that allows for a seamless combination with various existing OOD detection methods.
arXiv Detail & Related papers (2023-03-15T16:12:14Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - RankFeat: Rank-1 Feature Removal for Out-of-distribution Detection [65.67315418971688]
textttRankFeat is a simple yet effective textttpost hoc approach for OOD detection.
textttRankFeat achieves the emphstate-of-the-art performance and reduces the average false positive rate (FPR95) by 17.90% compared with the previous best method.
arXiv Detail & Related papers (2022-09-18T16:01:31Z) - A Simple Test-Time Method for Out-of-Distribution Detection [45.11199798139358]
This paper proposes a simple Test-time Linear Training (ETLT) method for OOD detection.
We find that the probabilities of input images being out-of-distribution are surprisingly linearly correlated to the features extracted by neural networks.
We propose an online variant of the proposed method, which achieves promising performance and is more practical in real-world applications.
arXiv Detail & Related papers (2022-07-17T16:02:58Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations.
We propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions.
We prove that even a much smaller dataset with well-matched annotations can facilitate models to achieve better performance as well as generalizability.
arXiv Detail & Related papers (2021-09-04T02:45:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.