FodFoM: Fake Outlier Data by Foundation Models Creates Stronger Visual Out-of-Distribution Detector
- URL: http://arxiv.org/abs/2412.05293v1
- Date: Fri, 22 Nov 2024 17:29:52 GMT
- Title: FodFoM: Fake Outlier Data by Foundation Models Creates Stronger Visual Out-of-Distribution Detector
- Authors: Jiankang Chen, Ling Deng, Zhiyong Gan, Wei-Shi Zheng, Ruixuan Wang,
- Abstract summary: Out-of-Distribution (OOD) detection is crucial when deploying machine learning models in open-world applications.
We propose a novel OOD detection framework FodFoM that innovatively combines multiple foundation models to generate two types of challenging fake outlier images.
New state-of-the-art OOD detection performance is achieved on multiple benchmarks.
- Score: 25.224930928724326
- License:
- Abstract: Out-of-Distribution (OOD) detection is crucial when deploying machine learning models in open-world applications. The core challenge in OOD detection is mitigating the model's overconfidence on OOD data. While recent methods using auxiliary outlier datasets or synthesizing outlier features have shown promising OOD detection performance, they are limited due to costly data collection or simplified assumptions. In this paper, we propose a novel OOD detection framework FodFoM that innovatively combines multiple foundation models to generate two types of challenging fake outlier images for classifier training. The first type is based on BLIP-2's image captioning capability, CLIP's vision-language knowledge, and Stable Diffusion's image generation ability. Jointly utilizing these foundation models constructs fake outlier images which are semantically similar to but different from in-distribution (ID) images. For the second type, GroundingDINO's object detection ability is utilized to help construct pure background images by blurring foreground ID objects in ID images. The proposed framework can be flexibly combined with multiple existing OOD detection methods. Extensive empirical evaluations show that image classifiers with the help of constructed fake images can more accurately differentiate real OOD images from ID ones. New state-of-the-art OOD detection performance is achieved on multiple benchmarks. The code is available at \url{https://github.com/Cverchen/ACMMM2024-FodFoM}.
Related papers
- TagFog: Textual Anchor Guidance and Fake Outlier Generation for Visual Out-of-Distribution Detection [34.31570050254269]
Out-of-distribution (OOD) detection is crucial in many real-world applications.
We propose a new learning framework which leverage simple Jigsaw-based fake OOD data and rich semantic embeddings (anchors') from the ChatGPT description of ID knowledge to help guide the training of the image encoder.
arXiv Detail & Related papers (2024-11-22T14:40:25Z) - Exploiting Diffusion Prior for Out-of-Distribution Detection [11.11093497717038]
Out-of-distribution (OOD) detection is crucial for deploying robust machine learning models.
We present a novel approach for OOD detection that leverages the generative ability of diffusion models and the powerful feature extraction capabilities of CLIP.
arXiv Detail & Related papers (2024-06-16T23:55:25Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
Out-of-distribution (OOD) samples are crucial when deploying machine learning models in open-world scenarios.
We propose to tackle this constraint by leveraging the expert knowledge and reasoning capability of large language models (LLM) to potential Outlier Exposure, termed EOE.
EOE can be generalized to different tasks, including far, near, and fine-language OOD detection.
EOE achieves state-of-the-art performance across different OOD tasks and can be effectively scaled to the ImageNet-1K dataset.
arXiv Detail & Related papers (2024-06-02T17:09:48Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Building One-class Detector for Anything: Open-vocabulary Zero-shot OOD
Detection Using Text-image Models [23.302018871162186]
We propose a novel one-class open-set OOD detector that leverages text-image pre-trained models in a zero-shot fashion.
Our approach is designed to detect anything not in-domain and offers the flexibility to detect a wide variety of OOD.
Our method shows superior performance over previous methods on all benchmarks.
arXiv Detail & Related papers (2023-05-26T18:58:56Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Improving Out-of-Distribution Detection with Disentangled Foreground and Background Features [23.266183020469065]
We propose a novel framework that disentangles foreground and background features from ID training samples via a dense prediction approach.
It is a generic framework that allows for a seamless combination with various existing OOD detection methods.
arXiv Detail & Related papers (2023-03-15T16:12:14Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
Fine-tuning deep learning models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness.
We propose a novel fine-tuning method, which uses masked images as counterfactual samples that help improve the robustness of the fine-tuning model.
arXiv Detail & Related papers (2023-03-06T11:51:28Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - OODformer: Out-Of-Distribution Detection Transformer [15.17006322500865]
In real-world safety-critical applications, it is important to be aware if a new data point is OOD.
This paper proposes a first-of-its-kind OOD detection architecture named OODformer.
arXiv Detail & Related papers (2021-07-19T15:46:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.