PeFoMed: Parameter Efficient Fine-tuning of Multimodal Large Language Models for Medical Imaging
- URL: http://arxiv.org/abs/2401.02797v2
- Date: Tue, 16 Apr 2024 06:50:58 GMT
- Title: PeFoMed: Parameter Efficient Fine-tuning of Multimodal Large Language Models for Medical Imaging
- Authors: Gang Liu, Jinlong He, Pengfei Li, Genrong He, Zhaolin Chen, Shenjun Zhong,
- Abstract summary: Multimodal large language models (MLLMs) represent an evolutionary expansion in the capabilities of traditional large language models.
Recent works investigate the adaptation of MLLMs as a universal solution to address medical multi-modal problems as a generative task.
We propose a parameter efficient framework for fine-tuning MLLMs, specifically validated on medical visual question answering (Med-VQA) and medical report generation (MRG) tasks.
- Score: 8.043625583479598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large language models (MLLMs) represent an evolutionary expansion in the capabilities of traditional large language models, enabling them to tackle challenges that surpass the scope of purely text-based applications. It leverages the knowledge previously encoded within these language models, thereby enhancing their applicability and functionality in the reign of multimodal contexts. Recent works investigate the adaptation of MLLMs as a universal solution to address medical multi-modal problems as a generative task. In this paper, we propose a parameter efficient framework for fine-tuning MLLMs, specifically validated on medical visual question answering (Med-VQA) and medical report generation (MRG) tasks, using public benchmark datasets. We also introduce an evaluation metric using the 5-point Likert scale and its weighted average value to measure the quality of the generated reports for MRG tasks, where the scale ratings are labelled by both humans manually and the GPT-4 model. We further assess the consistency of performance metrics across traditional measures, GPT-4, and human ratings for both VQA and MRG tasks. The results indicate that semantic similarity assessments using GPT-4 align closely with human annotators and provide greater stability, yet they reveal a discrepancy when compared to conventional lexical similarity measurements. This questions the reliability of lexical similarity metrics for evaluating the performance of generative models in Med-VQA and report generation tasks. Besides, our fine-tuned model significantly outperforms GPT-4v. This indicates that without additional fine-tuning, multi-modal models like GPT-4v do not perform effectively on medical imaging tasks. The code will be available here: https://github.com/jinlHe/PeFoMed.
Related papers
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
Large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning.
Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks.
We present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks.
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - Parameter-Efficient Fine-Tuning Medical Multimodal Large Language Models for Medical Visual Grounding [9.144030136201476]
Multimodal large language models (MLLMs) inherit the superior text understanding capabilities of LLMs and extend these capabilities to multimodal scenarios.
These models achieve excellent results in the general domain of multimodal tasks.
However, in the medical domain, the substantial training costs and the requirement for extensive medical data pose challenges to the development of medical MLLMs.
arXiv Detail & Related papers (2024-10-31T11:07:26Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)
MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.
It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - FMBench: Benchmarking Fairness in Multimodal Large Language Models on Medical Tasks [11.094602017349928]
We propose FMBench, the first benchmark designed to evaluate the fairness of MLLMs performance across diverse demographic attributes.
We thoroughly evaluate the performance and fairness of eight state-of-the-art open-source MLLMs, including both general and medical.
All data and code will be released upon acceptance.
arXiv Detail & Related papers (2024-10-01T21:38:15Z) - Adapting LLMs for the Medical Domain in Portuguese: A Study on Fine-Tuning and Model Evaluation [1.922611370494431]
This study evaluates the performance of large language models (LLMs) as medical agents in Portuguese.
The InternLM2 model, with initial training on medical data, presented the best overall performance.
DrBode models, derived from ChatBode, exhibited a phenomenon of catastrophic forgetting of acquired medical knowledge.
arXiv Detail & Related papers (2024-09-30T19:10:03Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - Uncertainty Estimation of Large Language Models in Medical Question Answering [60.72223137560633]
Large Language Models (LLMs) show promise for natural language generation in healthcare, but risk hallucinating factually incorrect information.
We benchmark popular uncertainty estimation (UE) methods with different model sizes on medical question-answering datasets.
Our results show that current approaches generally perform poorly in this domain, highlighting the challenge of UE for medical applications.
arXiv Detail & Related papers (2024-07-11T16:51:33Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
The scarcity of labelled medical image-report pairs presents great challenges in the development of deep and large-scale neural networks.
We propose customizing off-the-shelf general-purpose large-scale pre-trained models, i.e., foundation models (FMs) in computer vision and natural language processing.
arXiv Detail & Related papers (2023-06-09T03:02:36Z) - Multi-Modal Perceiver Language Model for Outcome Prediction in Emergency
Department [0.03088120935391119]
We are interested in outcome prediction and patient triage in hospital emergency department based on text information in chief complaints and vital signs recorded at triage.
We adapt Perceiver - a modality-agnostic transformer-based model that has shown promising results in several applications.
In the experimental analysis, we show that mutli-modality improves the prediction performance compared with models trained solely on text or vital signs.
arXiv Detail & Related papers (2023-04-03T06:32:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.