MedGemma Technical Report
- URL: http://arxiv.org/abs/2507.05201v3
- Date: Sat, 12 Jul 2025 19:13:40 GMT
- Title: MedGemma Technical Report
- Authors: Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo Kohlberger, Shawn Xu, Fayaz Jamil, Cían Hughes, Charles Lau, Justin Chen, Fereshteh Mahvar, Liron Yatziv, Tiffany Chen, Bram Sterling, Stefanie Anna Baby, Susanna Maria Baby, Jeremy Lai, Samuel Schmidgall, Lu Yang, Kejia Chen, Per Bjornsson, Shashir Reddy, Ryan Brush, Kenneth Philbrick, Mercy Asiedu, Ines Mezerreg, Howard Hu, Howard Yang, Richa Tiwari, Sunny Jansen, Preeti Singh, Yun Liu, Shekoofeh Azizi, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean-bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Elena Buchatskaya, Jean-Baptiste Alayrac, Dmitry Lepikhin, Vlad Feinberg, Sebastian Borgeaud, Alek Andreev, Cassidy Hardin, Robert Dadashi, Léonard Hussenot, Armand Joulin, Olivier Bachem, Yossi Matias, Katherine Chou, Avinatan Hassidim, Kavi Goel, Clement Farabet, Joelle Barral, Tris Warkentin, Jonathon Shlens, David Fleet, Victor Cotruta, Omar Sanseviero, Gus Martins, Phoebe Kirk, Anand Rao, Shravya Shetty, David F. Steiner, Can Kirmizibayrak, Rory Pilgrim, Daniel Golden, Lin Yang,
- Abstract summary: We introduce MedGemma, a collection of medical vision-language foundation models based on Gemma 3 4B and 27B.<n>MedGemma demonstrates advanced medical understanding and reasoning on images and text.<n>We additionally introduce MedSigLIP, a medically-tuned vision encoder derived from SigLIP.
- Score: 75.88152277443179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) has significant potential in healthcare applications, but its training and deployment faces challenges due to healthcare's diverse data, complex tasks, and the need to preserve privacy. Foundation models that perform well on medical tasks and require less task-specific tuning data are critical to accelerate the development of healthcare AI applications. We introduce MedGemma, a collection of medical vision-language foundation models based on Gemma 3 4B and 27B. MedGemma demonstrates advanced medical understanding and reasoning on images and text, significantly exceeding the performance of similar-sized generative models and approaching the performance of task-specific models, while maintaining the general capabilities of the Gemma 3 base models. For out-of-distribution tasks, MedGemma achieves 2.6-10% improvement on medical multimodal question answering, 15.5-18.1% improvement on chest X-ray finding classification, and 10.8% improvement on agentic evaluations compared to the base models. Fine-tuning MedGemma further improves performance in subdomains, reducing errors in electronic health record information retrieval by 50% and reaching comparable performance to existing specialized state-of-the-art methods for pneumothorax classification and histopathology patch classification. We additionally introduce MedSigLIP, a medically-tuned vision encoder derived from SigLIP. MedSigLIP powers the visual understanding capabilities of MedGemma and as an encoder achieves comparable or better performance than specialized medical image encoders. Taken together, the MedGemma collection provides a strong foundation of medical image and text capabilities, with potential to significantly accelerate medical research and development of downstream applications. The MedGemma collection, including tutorials and model weights, can be found at https://goo.gle/medgemma.
Related papers
- MedFormer: Hierarchical Medical Vision Transformer with Content-Aware Dual Sparse Selection Attention [1.474723404975345]
We present MedFormer, an efficient medical vision transformer with two key ideas.<n>First, it employs a pyramid scaling structure as a versatile backbone for various medical image recognition tasks.<n>Second, it introduces a novel Dual Sparse Selection Attention (DSSA) with content awareness to improve computational efficiency.
arXiv Detail & Related papers (2025-07-03T09:51:45Z) - Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning [57.873833577058]
We build a multimodal dataset enriched with extensive medical knowledge.<n>We then introduce our medical-specialized MLLM: Lingshu.<n>Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities.
arXiv Detail & Related papers (2025-06-08T08:47:30Z) - MedBridge: Bridging Foundation Vision-Language Models to Medical Image Diagnosis [10.082738539201804]
Recent vision-language foundation models deliver state-of-the-art results on natural image classification but falter on medical images due to domain shifts.<n>We introduce MedBridge, a lightweight multimodal adaptation framework that re-purposes pretrained VLMs for accurate medical image diagnosis.<n>MedBridge achieved over 6-15% improvement in AUC compared to state-of-the-art VLM adaptation methods in multi-label thoracic disease diagnosis.
arXiv Detail & Related papers (2025-05-27T19:37:51Z) - Agentic Medical Knowledge Graphs Enhance Medical Question Answering: Bridging the Gap Between LLMs and Evolving Medical Knowledge [6.977177904883792]
AMG-RAG is a framework that automates the construction and continuous updating of medical knowledge graphs.<n>It integrates reasoning, and retrieves current external evidence, such as PubMed and WikiSearch.<n>It achieves an F1 score of 74.1 percent on MEDQA and an accuracy of 66.34 percent on MEDMCQA, outperforming both comparable models and those 10 to 100 times larger.
arXiv Detail & Related papers (2025-02-18T16:29:45Z) - MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants [28.04215981636089]
We present MedMax, a large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models.<n>With 1.47 million instances, MedMax encompasses a diverse range of tasks, including interleaved imagetext generation, biomedical image captioning and generation, visual chat, and report understanding.<n>We fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements.
arXiv Detail & Related papers (2024-12-17T08:30:00Z) - HuatuoGPT-Vision, Towards Injecting Medical Visual Knowledge into Multimodal LLMs at Scale [29.956053068653734]
We create the PubMedVision dataset with 1.3 million medical VQA samples.
Using PubMedVision, we train a 34B medical MLLM HuatuoGPT-Vision, which shows superior performance in medical multimodal scenarios.
arXiv Detail & Related papers (2024-06-27T15:50:41Z) - Capabilities of Gemini Models in Medicine [100.60391771032887]
We introduce Med-Gemini, a family of highly capable multimodal models specialized in medicine.
We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them.
Our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment.
arXiv Detail & Related papers (2024-04-29T04:11:28Z) - Towards Generalist Biomedical AI [28.68106423175678]
We introduce Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system.
Med-PaLM M is a large multimodal generative model that flexibly encodes and interprets biomedical data.
We conduct a radiologist evaluation of model-generated (and human) chest X-ray reports and observe encouraging performance across model scales.
arXiv Detail & Related papers (2023-07-26T17:52:22Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
The scarcity of labelled medical image-report pairs presents great challenges in the development of deep and large-scale neural networks.
We propose customizing off-the-shelf general-purpose large-scale pre-trained models, i.e., foundation models (FMs) in computer vision and natural language processing.
arXiv Detail & Related papers (2023-06-09T03:02:36Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.