論文の概要: CrisisViT: A Robust Vision Transformer for Crisis Image Classification
- arxiv url: http://arxiv.org/abs/2401.02838v1
- Date: Fri, 5 Jan 2024 14:45:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 14:51:41.284860
- Title: CrisisViT: A Robust Vision Transformer for Crisis Image Classification
- Title(参考訳): crisisvit: 危機画像分類のためのロバストな視覚トランスフォーマー
- Authors: Zijun Long and Richard McCreadie and Muhammad Imran
- Abstract要約: 本稿では,画像の自動分類・タグ付けに最先端のディープニューラルモデルを用いることを提案する。
我々は、新しいインシデント1M危機画像データセットを活用し、新しいトランスフォーマーベースの画像分類モデルを開発する。
- 参考スコア(独自算出の注目度): 5.14879510106258
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In times of emergency, crisis response agencies need to quickly and
accurately assess the situation on the ground in order to deploy relevant
services and resources. However, authorities often have to make decisions based
on limited information, as data on affected regions can be scarce until local
response services can provide first-hand reports. Fortunately, the widespread
availability of smartphones with high-quality cameras has made citizen
journalism through social media a valuable source of information for crisis
responders. However, analyzing the large volume of images posted by citizens
requires more time and effort than is typically available. To address this
issue, this paper proposes the use of state-of-the-art deep neural models for
automatic image classification/tagging, specifically by adapting
transformer-based architectures for crisis image classification (CrisisViT). We
leverage the new Incidents1M crisis image dataset to develop a range of new
transformer-based image classification models. Through experimentation over the
standard Crisis image benchmark dataset, we demonstrate that the CrisisViT
models significantly outperform previous approaches in emergency type, image
relevance, humanitarian category, and damage severity classification.
Additionally, we show that the new Incidents1M dataset can further augment the
CrisisViT models resulting in an additional 1.25% absolute accuracy gain.
- Abstract(参考訳): 緊急時には、危機対応機関は、関連サービスやリソースを配備するために、地上の状況を迅速かつ正確に評価する必要がある。
しかし、当局は限られた情報に基づいて意思決定をしなければならないことが多く、地域対応サービスが直接報告できるまで、影響のある地域に関するデータは不足する可能性がある。
幸いなことに、高品質カメラを備えたスマートフォンが普及したことで、ソーシャルメディアを通じて市民ジャーナリズムは危機対応者にとって貴重な情報源となった。
しかし、市民が投稿する大量の画像を分析するには、通常より多くの時間と労力が必要となる。
本稿では,危機画像分類(crisisvit)にトランスフォーマベースのアーキテクチャを適用することにより,最先端のディープニューラルモデルを用いた画像分類・タグ付け手法を提案する。
我々は、新しいインシデント1M危機画像データセットを活用し、新しいトランスフォーマーベースの画像分類モデルを開発する。
標準危機画像ベンチマークデータセットに関する実験を通じて,危機度モデルが,緊急型,画像関連性,人道的カテゴリー,損傷損傷分類における従来のアプローチを大きく上回ることを実証した。
さらに,新しいインシデントs1mデータセットは,さらに1.25%の絶対精度向上をもたらす危機モデルをさらに強化できることを示す。
関連論文リスト
- Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data [66.49494950674402]
航空画像からの損傷評価のタスクのための大規模合成監視を作成する際に,新たなテキスト・画像生成モデルを活用する。
低リソース領域から何千ものポストディスアスター画像を生成するために、効率的でスケーラブルなパイプラインを構築しています。
我々は,xBDおよびSKAI画像のクロスジオグラフィー領域転送設定におけるフレームワークの強度を,単一ソースとマルチソースの両方で検証する。
論文 参考訳(メタデータ) (2024-05-22T16:07:05Z) - DeCrisisMB: Debiased Semi-Supervised Learning for Crisis Tweet
Classification via Memory Bank [52.20298962359658]
危機イベントにおいて、人々は、状況、警告、アドバイス、サポートに関する情報を広めるために、Twitterのようなソーシャルメディアプラットフォームを使うことが多い。
完全に教師されたアプローチでは、大量のデータを注釈付けする必要があります。
半教師付きモデルは偏りがあり、特定のクラスでは適度に機能し、他のクラスでは極めて貧弱である。
本稿では,メモリバンクを用いて,各学習クラスから生成された擬似ラベルを等しくサンプリングする,単純かつ効果的なデバイアス処理手法であるDeCrisisMBを提案する。
論文 参考訳(メタデータ) (2023-10-23T05:25:51Z) - CrisisTransformers: Pre-trained language models and sentence encoders for crisis-related social media texts [3.690904966341072]
ソーシャルメディアプラットフォームは危機コミュニケーションにおいて重要な役割を担っているが、危機に関連するソーシャルメディアのテキストを分析することは、その非公式な性質のため困難である。
本研究では,事前訓練された言語モデルと文エンコーダのアンサンブルであるCrisisTransformersを紹介した。
論文 参考訳(メタデータ) (2023-09-11T14:36:16Z) - CrisisLTLSum: A Benchmark for Local Crisis Event Timeline Extraction and
Summarization [62.77066949111921]
本稿では,現在までに利用可能な地域危機イベントタイムラインの最大のデータセットであるCrisisLTLSumについて述べる。
CrisisLTLSumには、山火事、地元の火災、交通、嵐の4つの領域にわたる1000の危機イベントタイムラインが含まれている。
最初の実験では, 両タスクの人的性能と比較して, 強いベースライン性能の間に有意な差があることが示唆された。
論文 参考訳(メタデータ) (2022-10-25T17:32:40Z) - Meta Adversarial Perturbations [66.43754467275967]
メタ逆境摂動(MAP)の存在を示す。
MAPは1段階の上昇勾配更新によって更新された後、自然画像を高い確率で誤分類する。
これらの摂動は画像に依存しないだけでなく、モデルに依存しないものであり、単一の摂動は見えないデータポイントと異なるニューラルネットワークアーキテクチャにまたがってうまく一般化される。
論文 参考訳(メタデータ) (2021-11-19T16:01:45Z) - Social Media Images Classification Models for Real-time Disaster
Response [5.937482215664902]
ソーシャルメディアで共有された画像は、状況の認識と被った損害の評価の観点から危機管理者を助けます。
リアルタイム画像分類は、より高速な応答を取るために緊急の要求となった。
最近のコンピュータビジョンとディープニューラルネットワークの進歩により、リアルタイム画像分類モデルの開発が可能になった。
論文 参考訳(メタデータ) (2021-04-09T04:30:04Z) - Bridging the gap between supervised classification and unsupervised
topic modelling for social-media assisted crisis management [0.5249805590164902]
Twitterなどのソーシャルメディアは、自然災害時に危機管理者や被災者に貴重な情報を提供します。
機械学習は、危機時に共有される大量のメッセージから情報を構造化および抽出するのに役立ちます。
bertembedsが危機関連ツイートの分類を微調整することで,新たな危機に効果的に対応できることを示す。
論文 参考訳(メタデータ) (2021-03-22T13:30:39Z) - Deep Learning Benchmarks and Datasets for Social Media Image
Classification for Disaster Response [5.610924570214424]
本研究では,災害タイプ検出,情報度分類,被害重大度評価のための新しいデータセットを提案する。
我々は、最先端のディープラーニングモデルをいくつかベンチマークし、有望な結果を得る。
我々は、適切なベースラインを提供するとともに、危機情報化コミュニティにおけるさらなる研究を促進するために、データセットとモデルを公開しています。
論文 参考訳(メタデータ) (2020-11-17T20:15:49Z) - Event-Related Bias Removal for Real-time Disaster Events [67.2965372987723]
ソーシャルメディアは、自然災害や大量攻撃などの危機事象に関する情報を共有する重要なツールとなっている。
有用な情報を含む実行可能なポストを検出するには、大量のデータをリアルタイムに高速に分析する必要がある。
我々は、潜在事象固有のバイアスを除去し、ツイート重要度分類の性能を向上させるために、敵対的ニューラルモデルを訓練する。
論文 参考訳(メタデータ) (2020-11-02T02:03:07Z) - CrisisBERT: a Robust Transformer for Crisis Classification and
Contextual Crisis Embedding [2.7718973516070684]
本稿では,危機検出と危機認識という2つの危機分類タスクのためのエンドツーエンドトランスフォーマーモデルを提案する。
私たちはまた、危機埋め込みのための注意ベースの文書レベルのコンテキスト埋め込みアーキテクチャであるCrisis2Vecを提案しました。
論文 参考訳(メタデータ) (2020-05-11T09:57:24Z) - Multimodal Categorization of Crisis Events in Social Media [81.07061295887172]
本稿では,画像とテキストの両方を入力として利用するマルチモーダル融合法を提案する。
特に、弱モダリティから非形式的および誤解を招くコンポーネントをフィルタリングできるクロスアテンションモジュールを導入する。
本手法は,3つの危機関連タスクにおいて,一様アプローチと強いマルチモーダルベースラインを大きなマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-04-10T06:31:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。