Nonlinear functional regression by functional deep neural network with kernel embedding
- URL: http://arxiv.org/abs/2401.02890v2
- Date: Mon, 12 May 2025 14:30:59 GMT
- Title: Nonlinear functional regression by functional deep neural network with kernel embedding
- Authors: Zhongjie Shi, Jun Fan, Linhao Song, Ding-Xuan Zhou, Johan A. K. Suykens,
- Abstract summary: We introduce a functional deep neural network with an adaptive and discretization-invariant dimension reduction method.<n>Explicit rates of approximating nonlinear smooth functionals across various input function spaces are derived.<n>We conduct numerical experiments on both simulated and real datasets to demonstrate the effectiveness and benefits of our functional net.
- Score: 18.927592350748682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep learning has been widely applied in functional data analysis (FDA) with notable empirical success. However, the infinite dimensionality of functional data necessitates an effective dimension reduction approach for functional learning tasks, particularly in nonlinear functional regression. In this paper, we introduce a functional deep neural network with an adaptive and discretization-invariant dimension reduction method. Our functional network architecture consists of three parts: first, a kernel embedding step that features an integral transformation with an adaptive smooth kernel; next, a projection step that utilizes eigenfunction bases based on a projection Mercer kernel for the dimension reduction; and finally, a deep ReLU neural network is employed for the prediction. Explicit rates of approximating nonlinear smooth functionals across various input function spaces by our proposed functional network are derived. Additionally, we conduct a generalization analysis for the empirical risk minimization (ERM) algorithm applied to our functional net, by employing a novel two-stage oracle inequality and the established functional approximation results. Ultimately, we conduct numerical experiments on both simulated and real datasets to demonstrate the effectiveness and benefits of our functional net.
Related papers
- Function Forms of Simple ReLU Networks with Random Hidden Weights [1.2289361708127877]
We investigate the function space dynamics of a two-layer ReLU neural network in the infinite-width limit.<n>We highlight the Fisher information matrix's role in steering learning.<n>This work offers a robust foundation for understanding wide neural networks.
arXiv Detail & Related papers (2025-05-23T13:53:02Z) - An Efficient Approach to Regression Problems with Tensor Neural Networks [5.345144592056051]
This paper introduces a tensor neural network (TNN) to address nonparametric regression problems.
The TNN demonstrates superior performance compared to conventional Feed-Forward Networks (FFN) and Radial Basis Function Networks (RBN)
A significant innovation in our approach is the integration of statistical regression and numerical integration within the TNN framework.
arXiv Detail & Related papers (2024-06-14T03:38:40Z) - Deep Sketched Output Kernel Regression for Structured Prediction [21.93695380726788]
kernel-induced losses provide a principled way to define structured output prediction tasks.
We tackle the question of how to train neural networks to solve structured output prediction tasks.
arXiv Detail & Related papers (2024-06-13T15:56:55Z) - Approximation of RKHS Functionals by Neural Networks [30.42446856477086]
We study the approximation of functionals on kernel reproducing Hilbert spaces (RKHS's) using neural networks.
We derive explicit error bounds for those induced by inverse multiquadric, Gaussian, and Sobolev kernels.
We apply our findings to functional regression, proving that neural networks can accurately approximate the regression maps.
arXiv Detail & Related papers (2024-03-18T18:58:23Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Approximation of Nonlinear Functionals Using Deep ReLU Networks [7.876115370275732]
We investigate the approximation power of functional deep neural networks associated with the rectified linear unit (ReLU) activation function.
In addition, we establish rates of approximation of the proposed functional deep ReLU networks under mild regularity conditions.
arXiv Detail & Related papers (2023-04-10T08:10:11Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Deep Neural Network Classifier for Multi-dimensional Functional Data [4.340040784481499]
We propose a new approach, called as functional deep neural network (FDNN), for classifying multi-dimensional functional data.
Specifically, a deep neural network is trained based on the principle components of the training data which shall be used to predict the class label of a future data function.
arXiv Detail & Related papers (2022-05-17T19:22:48Z) - NeuralEF: Deconstructing Kernels by Deep Neural Networks [47.54733625351363]
Traditional nonparametric solutions based on the Nystr"om formula suffer from scalability issues.
Recent work has resorted to a parametric approach, i.e., training neural networks to approximate the eigenfunctions.
We show that these problems can be fixed by using a new series of objective functions that generalizes to space of supervised and unsupervised learning problems.
arXiv Detail & Related papers (2022-04-30T05:31:07Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Modern Non-Linear Function-on-Function Regression [8.231050911072755]
We introduce a new class of non-linear function-on-function regression models for functional data using neural networks.
We give two model fitting strategies, Functional Direct Neural Network (FDNN) and Functional Basis Neural Network (FBNN)
arXiv Detail & Related papers (2021-07-29T16:19:59Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - Non-linear Functional Modeling using Neural Networks [6.624726878647541]
We introduce a new class of non-linear models for functional data based on neural networks.
We propose two variations of our framework: a functional neural network with continuous hidden layers, and a second version that utilizes basis expansions and continuous hidden layers.
arXiv Detail & Related papers (2021-04-19T14:59:55Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - CDiNN -Convex Difference Neural Networks [0.8122270502556374]
Neural networks with ReLU activation function have been shown to be universal function approximators learn function mapping as non-smooth functions.
New neural network architecture called ICNNs learn the output as a convex input.
arXiv Detail & Related papers (2021-03-31T17:31:16Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.