Deep Sketched Output Kernel Regression for Structured Prediction
- URL: http://arxiv.org/abs/2406.09253v1
- Date: Thu, 13 Jun 2024 15:56:55 GMT
- Title: Deep Sketched Output Kernel Regression for Structured Prediction
- Authors: Tamim El Ahmad, Junjie Yang, Pierre Laforgue, Florence d'Alché-Buc,
- Abstract summary: kernel-induced losses provide a principled way to define structured output prediction tasks.
We tackle the question of how to train neural networks to solve structured output prediction tasks.
- Score: 21.93695380726788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By leveraging the kernel trick in the output space, kernel-induced losses provide a principled way to define structured output prediction tasks for a wide variety of output modalities. In particular, they have been successfully used in the context of surrogate non-parametric regression, where the kernel trick is typically exploited in the input space as well. However, when inputs are images or texts, more expressive models such as deep neural networks seem more suited than non-parametric methods. In this work, we tackle the question of how to train neural networks to solve structured output prediction tasks, while still benefiting from the versatility and relevance of kernel-induced losses. We design a novel family of deep neural architectures, whose last layer predicts in a data-dependent finite-dimensional subspace of the infinite-dimensional output feature space deriving from the kernel-induced loss. This subspace is chosen as the span of the eigenfunctions of a randomly-approximated version of the empirical kernel covariance operator. Interestingly, this approach unlocks the use of gradient descent algorithms (and consequently of any neural architecture) for structured prediction. Experiments on synthetic tasks as well as real-world supervised graph prediction problems show the relevance of our method.
Related papers
- Learning Differentiable Surrogate Losses for Structured Prediction [23.15754467559003]
We introduce a novel framework in which a structured loss function, parameterized by neural networks, is learned directly from output training data.
As a result, the differentiable loss not only enables the learning of neural networks due to the finite dimension of the surrogate space but also allows for the prediction of new structures of the output data.
arXiv Detail & Related papers (2024-11-18T16:07:47Z) - Nonlinear functional regression by functional deep neural network with
kernel embedding [20.306390874610635]
We propose a functional deep neural network with an efficient and fully data-dependent dimension reduction method.
The architecture of our functional net consists of a kernel embedding step, a projection step, and a deep ReLU neural network for the prediction.
The utilization of smooth kernel embedding enables our functional net to be discretization invariant, efficient, and robust to noisy observations.
arXiv Detail & Related papers (2024-01-05T16:43:39Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - NeuralEF: Deconstructing Kernels by Deep Neural Networks [47.54733625351363]
Traditional nonparametric solutions based on the Nystr"om formula suffer from scalability issues.
Recent work has resorted to a parametric approach, i.e., training neural networks to approximate the eigenfunctions.
We show that these problems can be fixed by using a new series of objective functions that generalizes to space of supervised and unsupervised learning problems.
arXiv Detail & Related papers (2022-04-30T05:31:07Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Learning Output Embeddings in Structured Prediction [73.99064151691597]
A powerful and flexible approach to structured prediction consists in embedding the structured objects to be predicted into a feature space of possibly infinite dimension.
A prediction in the original space is computed by solving a pre-image problem.
In this work, we propose to jointly learn a finite approximation of the output embedding and the regression function into the new feature space.
arXiv Detail & Related papers (2020-07-29T09:32:53Z) - Spectral Bias and Task-Model Alignment Explain Generalization in Kernel
Regression and Infinitely Wide Neural Networks [17.188280334580195]
Generalization beyond a training dataset is a main goal of machine learning.
Recent observations in deep neural networks contradict conventional wisdom from classical statistics.
We show that more data may impair generalization when noisy or not expressible by the kernel.
arXiv Detail & Related papers (2020-06-23T17:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.