Rule-Guided Joint Embedding Learning over Knowledge Graphs
- URL: http://arxiv.org/abs/2401.02968v2
- Date: Sat, 27 Jan 2024 20:54:46 GMT
- Title: Rule-Guided Joint Embedding Learning over Knowledge Graphs
- Authors: Qisong Li, Ji Lin, Sijia Wei, Neng Liu
- Abstract summary: This paper introduces a novel model that incorporates both contextual and literal information into entity and relation embeddings.
For contextual information, we assess its significance through confidence and relatedness metrics.
We validate our model performance with thorough experiments on two established benchmark datasets.
- Score: 6.831227021234669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies focus on embedding learning over knowledge graphs, which map
entities and relations in knowledge graphs into low-dimensional vector spaces.
While existing models mainly consider the aspect of graph structure, there
exists a wealth of contextual and literal information that can be utilized for
more effective embedding learning. This paper introduces a novel model that
incorporates both contextual and literal information into entity and relation
embeddings by utilizing graph convolutional networks. Specifically, for
contextual information, we assess its significance through confidence and
relatedness metrics. In addition, a unique rule-based method is developed to
calculate the confidence metric, and the relatedness metric is derived from the
literal information's representations. We validate our model performance with
thorough experiments on two established benchmark datasets.
Related papers
- Detecting text level intellectual influence with knowledge graph embeddings [0.0]
We collect a corpus of open source journal articles and generate Knowledge Graph representations using the Gemini LLM.
We attempt to predict the existence of citations between sampled pairs of articles using previously published methods and a novel Graph Neural Network based embedding model.
arXiv Detail & Related papers (2024-10-31T15:21:27Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Learning Representations of Entities and Relations [0.0]
This thesis focuses on improving knowledge graph representation with the aim of tackling the link prediction task.
The first contribution is HypER, a convolutional model which simplifies and improves upon the link prediction performance.
The second contribution is TuckER, a relatively straightforward linear model, which, at the time of its introduction, obtained state-of-the-art link prediction performance.
The third contribution is MuRP, first multi-relational graph representation model embedded in hyperbolic space.
arXiv Detail & Related papers (2022-01-31T09:24:43Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - Knowledge Graph Embedding using Graph Convolutional Networks with
Relation-Aware Attention [3.803929794912623]
Knowledge graph embedding methods learn embeddings of entities and relations in a low dimensional space.
Various graph convolutional network methods have been proposed which use different types of information to learn the features of entities and relations.
We propose a relation-aware graph attention model that leverages relation information to compute different weights to the neighboring nodes for learning embeddings of entities and relations.
arXiv Detail & Related papers (2021-02-14T17:19:44Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.