Knowledge Graph Embedding using Graph Convolutional Networks with
Relation-Aware Attention
- URL: http://arxiv.org/abs/2102.07200v1
- Date: Sun, 14 Feb 2021 17:19:44 GMT
- Title: Knowledge Graph Embedding using Graph Convolutional Networks with
Relation-Aware Attention
- Authors: Nasrullah Sheikh, Xiao Qin, Berthold Reinwald, Christoph Miksovic,
Thomas Gschwind, Paolo Scotton
- Abstract summary: Knowledge graph embedding methods learn embeddings of entities and relations in a low dimensional space.
Various graph convolutional network methods have been proposed which use different types of information to learn the features of entities and relations.
We propose a relation-aware graph attention model that leverages relation information to compute different weights to the neighboring nodes for learning embeddings of entities and relations.
- Score: 3.803929794912623
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Knowledge graph embedding methods learn embeddings of entities and relations
in a low dimensional space which can be used for various downstream machine
learning tasks such as link prediction and entity matching. Various graph
convolutional network methods have been proposed which use different types of
information to learn the features of entities and relations. However, these
methods assign the same weight (importance) to the neighbors when aggregating
the information, ignoring the role of different relations with the neighboring
entities. To this end, we propose a relation-aware graph attention model that
leverages relation information to compute different weights to the neighboring
nodes for learning embeddings of entities and relations. We evaluate our
proposed approach on link prediction and entity matching tasks. Our
experimental results on link prediction on three datasets (one proprietary and
two public) and results on unsupervised entity matching on one proprietary
dataset demonstrate the effectiveness of the relation-aware attention.
Related papers
- Rule-Guided Joint Embedding Learning over Knowledge Graphs [6.831227021234669]
This paper introduces a novel model that incorporates both contextual and literal information into entity and relation embeddings.
For contextual information, we assess its significance through confidence and relatedness metrics.
We validate our model performance with thorough experiments on two established benchmark datasets.
arXiv Detail & Related papers (2023-12-01T19:58:31Z) - Learning Representations without Compositional Assumptions [79.12273403390311]
We propose a data-driven approach that learns feature set dependencies by representing feature sets as graph nodes and their relationships as learnable edges.
We also introduce LEGATO, a novel hierarchical graph autoencoder that learns a smaller, latent graph to aggregate information from multiple views dynamically.
arXiv Detail & Related papers (2023-05-31T10:36:10Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
We propose a graph-based personalized algorithm (GATTA) for distributed deep learning.
In particular, the personalized model in each agent is composed of a global part and a node-specific part.
By treating each agent as one node in a graph the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited.
arXiv Detail & Related papers (2023-05-22T13:48:30Z) - SMiLE: Schema-augmented Multi-level Contrastive Learning for Knowledge
Graph Link Prediction [28.87290783250351]
Link prediction is the task of inferring missing links between entities in knowledge graphs.
We propose a novel Multi-level contrastive LEarning framework (SMiLE) to conduct knowledge graph link prediction.
arXiv Detail & Related papers (2022-10-10T17:40:19Z) - ConstGCN: Constrained Transmission-based Graph Convolutional Networks
for Document-level Relation Extraction [24.970508961370548]
Document-level relation extraction with graph neural networks faces a fundamental graph construction gap between training and inference.
We propose $textbfConstGCN$, a novel graph convolutional network which performs knowledge-based information propagation between entities.
Experimental results show that our method outperforms the previous state-of-the-art (SOTA) approaches on the DocRE dataset.
arXiv Detail & Related papers (2022-10-08T07:36:04Z) - Jointly Learning Knowledge Embedding and Neighborhood Consensus with
Relational Knowledge Distillation for Entity Alignment [9.701081498310165]
Entity alignment aims at integrating heterogeneous knowledge from different knowledge graphs.
Recent studies employ embedding-based methods by first learning representation of Knowledge Graphs and then performing entity alignment.
We propose a Graph Convolutional Network (GCN) model equipped with knowledge distillation for entity alignment.
arXiv Detail & Related papers (2022-01-25T02:47:14Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
We propose a message passing graph neural network that explicitly models relational-temporal relations.
We show how our method is able to more effectively model relationships between relevant entities in the scene.
arXiv Detail & Related papers (2021-03-29T14:37:35Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Affinity Graph Supervision for Visual Recognition [35.35959846458965]
We propose a principled method to supervise the learning of weights in affinity graphs.
Our affinity supervision improves relationship recovery between objects, even without manually annotated relationship labels.
We show that affinity learning can also be applied to graphs built from mini-batches, for neural network training.
arXiv Detail & Related papers (2020-03-19T23:52:51Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Relational Message Passing for Knowledge Graph Completion [78.47976646383222]
We propose a relational message passing method for knowledge graph completion.
It passes relational messages among edges iteratively to aggregate neighborhood information.
Results show our method outperforms stateof-the-art knowledge completion methods by a large margin.
arXiv Detail & Related papers (2020-02-17T03:33:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.