論文の概要: Deep Anomaly Detection in Text
- arxiv url: http://arxiv.org/abs/2401.02971v1
- Date: Thu, 14 Dec 2023 22:04:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 09:30:48.993637
- Title: Deep Anomaly Detection in Text
- Title(参考訳): テキスト中の深部異常検出
- Authors: Andrei Manolache
- Abstract要約: 本論文は,テキストコーパスに適したプリテキストタスクを活用することによって,異常を検出する手法を開発することを目的とする。
このアプローチは、半教師付きおよび教師なしの異常検出の両方において、2つのデータセットである20NewsgroupsとAG Newsの最先端性を大幅に改善する。
- 参考スコア(独自算出の注目度): 3.4265828682659705
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep anomaly detection methods have become increasingly popular in recent
years, with methods like Stacked Autoencoders, Variational Autoencoders, and
Generative Adversarial Networks greatly improving the state-of-the-art. Other
methods rely on augmenting classical models (such as the One-Class Support
Vector Machine), by learning an appropriate kernel function using Neural
Networks. Recent developments in representation learning by self-supervision
are proving to be very beneficial in the context of anomaly detection. Inspired
by the advancements in anomaly detection using self-supervised learning in the
field of computer vision, this thesis aims to develop a method for detecting
anomalies by exploiting pretext tasks tailored for text corpora. This approach
greatly improves the state-of-the-art on two datasets, 20Newsgroups, and AG
News, for both semi-supervised and unsupervised anomaly detection, thus proving
the potential for self-supervised anomaly detectors in the field of natural
language processing.
- Abstract(参考訳): 近年では、スタック型オートエンコーダ、変分オートエンコーダ、生成型逆ネットワークといった手法が最先端技術を大幅に改善し、深い異常検出手法が普及している。
他の手法では、ニューラルネットワークを用いて適切なカーネル関数を学習することで、古典的なモデル(例えばワンクラスサポートベクトルマシン)の強化に依存している。
自己スーパービジョンによる表現学習の最近の発展は、異常検出の文脈において非常に有益であることが証明されている。
コンピュータビジョンの分野における自己教師付き学習を用いた異常検出の進歩に触発され,テキストコーパスに適したプリテキストタスクを活用し,異常検出手法の開発を目指す。
このアプローチは、半教師付きおよび教師なしの異常検出のための2つのデータセットである20NewsgroupsとAG Newsの最先端を大いに改善し、自然言語処理分野における自己教師付き異常検出の可能性を示す。
関連論文リスト
- Towards Open-World Object-based Anomaly Detection via Self-Supervised Outlier Synthesis [15.748043194987075]
この研究は、オープンワールドオブジェクト検出器とOoD検出器を仮想外周で活用することでギャップを埋めることを目的としている。
提案手法では,オブジェクト検出アーキテクチャ全体を拡張して,クラスラベルに依存することなく,異常に認識された特徴表現を学習する。
提案手法は,オブジェクトレベルの異常検出における最先端性能を確立し,自然画像の平均リコールスコアを5.4%以上向上させる。
論文 参考訳(メタデータ) (2024-07-22T16:16:38Z) - GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralADは、意味的、ほぼ分布的、産業的設定で動作するように設計された異常検出フレームワークである。
本稿では,ノイズ付加やシャッフルなどの簡単な操作を施した自己教師付き異常生成モジュールを提案する。
提案手法を10のデータセットに対して広範囲に評価し,6つの実験結果と,残りの6つの実験結果を得た。
論文 参考訳(メタデータ) (2024-07-17T09:27:41Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
コントラスト学習と2D-Flowを組み合わせた自己教師付き異常検出手法を提案する。
本手法は,主流の教師なし手法と比較して,検出精度が向上し,モデルパラメータが減少し,推論速度が向上することを示す。
BTADデータセットでは,MVTecADデータセットでは画像レベルのAUROCが99.6%,BTADデータセットでは画像レベルのAUROCが96.8%であった。
論文 参考訳(メタデータ) (2023-11-12T10:07:03Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己教師型予測畳み込み抑止ブロック(SSPCAB)を3次元マスク付き畳み込み層,チャンネルワイドアテンション用トランスフォーマー,およびハマーロスに基づく新たな自己教師型目標を用いて拡張する。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - Anomaly Detection with Adversarially Learned Perturbations of Latent
Space [9.473040033926264]
異常検出は、正常なデータの分布に適合しないサンプルを特定することである。
本研究では,2つの競合するコンポーネント,Adversarial Distorter と Autoencoder で構成される対角的フレームワークを設計した。
提案手法は,画像およびビデオデータセットの異常検出において,既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-03T19:32:00Z) - A Critical Study on the Recent Deep Learning Based Semi-Supervised Video
Anomaly Detection Methods [3.198144010381572]
本稿では,この分野の研究者を新たな視点に紹介し,最近の深層学習に基づく半教師付きビデオ異常検出手法についてレビューする。
私たちのゴールは、より効果的なビデオ異常検出方法の開発を支援することです。
論文 参考訳(メタデータ) (2021-11-02T14:00:33Z) - Anomaly Detection via Self-organizing Map [52.542991004752]
製品品質管理のための工業生産において,異常検出が重要な役割を担っている。
従来の異常検出方法は、限定的な一般化能力を持つルールベースである。
教師付きディープラーニングに基づく最近の手法は、より強力だが、訓練には大規模な注釈付きデータセットが必要である。
論文 参考訳(メタデータ) (2021-07-21T06:56:57Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
現在の運用環境に固有ののは、敵対的機械学習の実践である。
本研究では,教師なし学習とグラフに基づく異常検出の可能性を検討する。
我々は,教師付きモデルの訓練時に,現実的な対人訓練機構を組み込んで,対人環境における強力な分類性能を実現する。
論文 参考訳(メタデータ) (2021-05-14T10:05:10Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Double-Adversarial Activation Anomaly Detection: Adversarial
Autoencoders are Anomaly Generators [0.0]
異常検出は、固有のクラス不均衡のため、機械学習アルゴリズムにとって難しいタスクである。
生成モデルに着想を得て,ニューラルネットワークの隠れ活性化の解析を行い,DA3Dと呼ばれる新しい教師なし異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-01-12T18:07:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。