論文の概要: Blar-SQL: Faster, Stronger, Smaller NL2SQL
- arxiv url: http://arxiv.org/abs/2401.02997v1
- Date: Thu, 4 Jan 2024 16:50:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 20:58:32.367953
- Title: Blar-SQL: Faster, Stronger, Smaller NL2SQL
- Title(参考訳): Blar-SQL: より速く、より強く、より小さなNL2SQL
- Authors: Jos\'e Manuel Dom\'inguez, Benjam\'in Err\'azuriz, Patricio Daher
- Abstract要約: データベースの理解とクエリ生成において,タスクの分解が大規模言語モデル(LLM)に大きな利益をもたらすことを示す。
我々は、より多くの情報を限られたコンテキストに適合させるために、スキーマをチャンクに分割する新しいフレームワークを提案する。
その結果,GPT-4はGPT-4の135倍,90倍,100倍以上の速さであった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have gained considerable notoriety in the field
of natural language to SQL tasks (NL2SQL). In this study, we show how task
decomposition can greatly benefit LLMs in database understanding and query
generation in order to answer human questions with an SQL query.
We fined-tuned open source models, specifically Llama-2 and Code Llama, by
combining 2 different models each designated to focus on one of two tasks in
order to leverage each model's core competency to further increase the accuracy
of the final SQL query.
We propose a new framework to divide the schema into chunks in order to fit
more information into a limited context. Our results are comparable with those
obtained by GPT-4 at the same time being 135 times smaller, 90 times faster and
more than 100 times cheaper than GPT-4.
- Abstract(参考訳): 大規模言語モデル (LLM) は、自然言語からSQLタスク (NL2SQL) まで、かなり有名になった。
本研究では,SQLクエリによる人間の質問に答えるために,データベース理解とクエリ生成において,タスク分解がLLMに大きく貢献することを示す。
我々は、各モデルのコアコンピテンシーを活用し、最終的なsqlクエリの精度をさらに高めるために、2つのタスクの1つにフォーカスするように指定された2つの異なるモデルを組み合わせて、llama-2とcode llamaを微調整した。
我々は、より詳細な情報を限られたコンテキストに適合させるために、スキーマをチャンクに分割する新しいフレームワークを提案する。
その結果,GPT-4はGPT-4の135倍,90倍,100倍以上の速さであった。
関連論文リスト
- RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
本稿では、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSLと呼ばれる新しいフレームワークを提案する。
ベンチマークの結果,オープンソースのソリューション間でのSOTA実行精度は67.2%,BIRDは87.9%,GPT-4オクルージョンは87.9%であった。
提案手法は,DeepSeekを同一のプロンプトで適用した場合,GPT-4ベースのテキスト・ツー・シークシステムよりも優れている。
論文 参考訳(メタデータ) (2024-10-31T16:22:26Z) - LR-SQL: A Supervised Fine-Tuning Method for Text2SQL Tasks under Low-Resource Scenarios [1.4387218083918762]
大規模言語モデルは、教師付き微調整によってText2に革命をもたらす。
しかし、データベースの複雑さがコンテキスト長の増大につながるため、重要な制限は見過ごされてしまう。
本稿では,既存の微調整法と比較して,全GPUメモリ使用量を40%削減するLR-Thoughtを提案する。
論文 参考訳(メタデータ) (2024-10-15T10:02:55Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - Knowledge-to-SQL: Enhancing SQL Generation with Data Expert LLM [15.888784472807775]
既存のメソッドは、クエリを生成するための大規模言語モデル(LLM)の包括的な機能に依存している。
我々は,すべてのテキスト・トゥ・モデルに対して適切な知識を利用する知識・ツー・データ・エキスパート・フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-18T09:10:04Z) - MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL [47.120862170230566]
最近のText-to-Yourselfメソッドは通常、"巨大な"データベース上での大幅なパフォーマンス劣化に悩まされる。
我々は,新しいテキスト・ツー・ユー・セルフ LLM ベースのマルチエージェント協調フレームワーク MAC を紹介する。
我々のフレームワークでは、GPT-4を全てのエージェントタスクの強力なバックボーンとして利用し、フレームワークの上限を決定する。
次に、Code 7Bを活用することで、オープンソースの命令フォローモデルであるsql-Llamaを微調整し、GPT-4のように全てのタスクを達成します。
論文 参考訳(メタデータ) (2023-12-18T14:40:20Z) - Fine-Tuning Language Models for Context-Specific SQL Query Generation [0.0]
本稿では,自然言語を tosql クエリに変換するタスクに対して,オープンソースの大規模言語モデル (LLM) を微調整する新しい手法を提案する。
我々は、Snowflake SQLとGoogleの方言に合わせて、合成データセットに基づいて訓練されたsqlクエリ生成に特化したモデルを紹介する。
提案手法では,GPT-4を用いてコンテキスト固有のデータセットを生成し,リソース制約を最適化するためにLoRa技術を用いて3つのオープンソースLCM(Starcoder Plus,Code-Llama,Mistral)を微調整する。
微調整モデルでは、ベースラインGPと比較してゼロショット設定では優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-04T18:04:27Z) - Interleaving Pre-Trained Language Models and Large Language Models for
Zero-Shot NL2SQL Generation [23.519727682763644]
ZeroNL2は、新しい環境に適応する自然言語のtosqlの実現に不可欠である。
既存のアプローチは、データに基づいた微調整事前学習言語モデル(PLM)か、ChatGPTのような固定された大言語モデル(LLM)をガイドするプロンプトを使用する。
ゼロショットNL2をサポートするために, PLM と LLM の相補的な利点を組み合わせた ZeroNL2 フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-15T06:50:51Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
我々は最近提案されたQDMR(QDMR)という意味表現を活用している。
質問やQDMR構造(非専門家によって注釈付けされたり、自動予測されたりする)、回答が与えられたら、我々は自動的にsqlクエリを合成できる。
本結果は,NL-ベンチマークデータを用いて訓練したモデルと,弱い教師付きモデルが競合することを示す。
論文 参考訳(メタデータ) (2021-12-12T20:02:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。