A Joint-Reasoning based Disease Q&A System
- URL: http://arxiv.org/abs/2401.03181v2
- Date: Sat, 28 Sep 2024 13:42:31 GMT
- Title: A Joint-Reasoning based Disease Q&A System
- Authors: Prakash Chandra Sukhwal, Vaibhav Rajan, Atreyi Kankanhalli,
- Abstract summary: Medical question answer (QA) assistants respond to lay users' health-related queries by synthesizing information from multiple sources.
They can serve as vital tools to alleviate issues of misinformation, information overload, and complexity of medical language.
- Score: 6.117758142183177
- License:
- Abstract: Medical question answer (QA) assistants respond to lay users' health-related queries by synthesizing information from multiple sources using natural language processing and related techniques. They can serve as vital tools to alleviate issues of misinformation, information overload, and complexity of medical language, thus addressing lay users' information needs while reducing the burden on healthcare professionals. QA systems, the engines of such assistants, have typically used either language models (LMs) or knowledge graphs (KG), though the approaches could be complementary. LM-based QA systems excel at understanding complex questions and providing well-formed answers, but are prone to factual mistakes. KG-based QA systems, which represent facts well, are mostly limited to answering short-answer questions with pre-created templates. While a few studies have jointly used LM and KG approaches for text-based QA, this was done to answer multiple-choice questions. Extant QA systems also have limitations in terms of automation and performance. We address these challenges by designing a novel, automated disease QA system which effectively utilizes both LM and KG techniques through a joint-reasoning approach to answer disease-related questions appropriate for lay users. Our evaluation of the system using a range of quality metrics demonstrates its efficacy over benchmark systems, including the popular ChatGPT.
Related papers
- XAIQA: Explainer-Based Data Augmentation for Extractive Question
Answering [1.1867812760085572]
We introduce a novel approach, XAIQA, for generating synthetic QA pairs at scale from data naturally available in electronic health records.
Our method uses the idea of a classification model explainer to generate questions and answers about medical concepts corresponding to medical codes.
arXiv Detail & Related papers (2023-12-06T15:59:06Z) - Medical Question Understanding and Answering with Knowledge Grounding
and Semantic Self-Supervision [53.692793122749414]
We introduce a medical question understanding and answering system with knowledge grounding and semantic self-supervision.
Our system is a pipeline that first summarizes a long, medical, user-written question, using a supervised summarization loss.
The system first matches the summarized user question with an FAQ from a trusted medical knowledge base, and then retrieves a fixed number of relevant sentences from the corresponding answer document.
arXiv Detail & Related papers (2022-09-30T08:20:32Z) - Evaluation of Question Answering Systems: Complexity of judging a
natural language [3.4771957347698583]
Question answering (QA) systems are among the most important and rapidly developing research topics in natural language processing (NLP)
This survey attempts to provide a systematic overview of the general framework of QA, QA paradigms, benchmark datasets, and assessment techniques for a quantitative evaluation of QA systems.
arXiv Detail & Related papers (2022-09-10T12:29:04Z) - Improving the Question Answering Quality using Answer Candidate
Filtering based on Natural-Language Features [117.44028458220427]
We address the problem of how the Question Answering (QA) quality of a given system can be improved.
Our main contribution is an approach capable of identifying wrong answers provided by a QA system.
In particular, our approach has shown its potential while removing in many cases the majority of incorrect answers.
arXiv Detail & Related papers (2021-12-10T11:09:44Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
Question Generation (QG) is the task of generating a plausible question for a passage, answer> pair.
We make use of freely available news summary data, transforming declarative sentences into appropriate questions using dependency parsing, named entity recognition and semantic role labeling.
The resulting questions are then combined with the original news articles to train an end-to-end neural QG model.
arXiv Detail & Related papers (2021-09-16T13:08:43Z) - QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering [122.84513233992422]
We propose a new model, QA-GNN, which addresses the problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs)
We show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning.
arXiv Detail & Related papers (2021-04-13T17:32:51Z) - NoiseQA: Challenge Set Evaluation for User-Centric Question Answering [68.67783808426292]
We show that components in the pipeline that precede an answering engine can introduce varied and considerable sources of error.
We conclude that there is substantial room for progress before QA systems can be effectively deployed.
arXiv Detail & Related papers (2021-02-16T18:35:29Z) - Biomedical Question Answering: A Comprehensive Review [19.38459023509541]
Question Answering (QA) is a benchmark Natural Language Processing (NLP) task where models predict the answer for a given question using related documents, images, knowledge bases and question-answer pairs.
For specific domains like biomedicine, QA systems are still rarely used in real-life settings.
Biomedical QA (BQA), as an emerging QA task, enables innovative applications to effectively perceive, access and understand complex biomedical knowledge.
arXiv Detail & Related papers (2021-02-10T06:16:35Z) - A Neural Question Answering System for Basic Questions about Subroutines [32.98355443690782]
A question answering (QA) system is a type of conversational AI that generates natural language answers to questions posed by human users.
We take initial steps to bringing state-of-the-art neural technologies to Software Engineering applications by designing a context-based QA system.
arXiv Detail & Related papers (2021-01-11T16:18:52Z) - Interpretable Multi-Step Reasoning with Knowledge Extraction on Complex
Healthcare Question Answering [89.76059961309453]
HeadQA dataset contains multiple-choice questions authorized for the public healthcare specialization exam.
These questions are the most challenging for current QA systems.
We present a Multi-step reasoning with Knowledge extraction framework (MurKe)
We are striving to make full use of off-the-shelf pre-trained models.
arXiv Detail & Related papers (2020-08-06T02:47:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.