論文の概要: Convergence Rate Maximization for Split Learning-based Control of EMG Prosthetic Devices
- arxiv url: http://arxiv.org/abs/2401.03233v3
- Date: Sun, 12 May 2024 21:39:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 00:43:11.845007
- Title: Convergence Rate Maximization for Split Learning-based Control of EMG Prosthetic Devices
- Title(参考訳): 分割学習に基づくEMG補綴装置の収束率最大化
- Authors: Matea Marinova, Daniel Denkovski, Hristijan Gjoreski, Zoran Hadzi-Velkov, Valentin Rakovic,
- Abstract要約: Split Learning (SL) は筋電図に基づく補綴制御における有望な分散学習手法である。
本稿では,モデル収束率の最大化の観点から,最適カット層選択のためのアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.432653781859026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Split Learning (SL) is a promising Distributed Learning approach in electromyography (EMG) based prosthetic control, due to its applicability within resource-constrained environments. Other learning approaches, such as Deep Learning and Federated Learning (FL), provide suboptimal solutions, since prosthetic devices are extremely limited in terms of processing power and battery life. The viability of implementing SL in such scenarios is caused by its inherent model partitioning, with clients executing the smaller model segment. However, selecting an inadequate cut layer hinders the training process in SL systems. This paper presents an algorithm for optimal cut layer selection in terms of maximizing the convergence rate of the model. The performance evaluation demonstrates that the proposed algorithm substantially accelerates the convergence in an EMG pattern recognition task for improving prosthetic device control.
- Abstract(参考訳): Split Learning (SL) は筋電図に基づく補綴制御における有望な分散学習手法である。
ディープラーニングやフェデレートラーニング(FL)といった他の学習手法は、補綴装置の処理能力とバッテリー寿命に極めて制限があるため、準最適ソリューションを提供する。
このようなシナリオでSLを実装することは、クライアントがより小さなモデルセグメントを実行するという、その固有のモデルパーティショニングによって引き起こされる。
しかし、不適切なカット層を選択することは、SLシステムのトレーニングプロセスを妨げる。
本稿では,モデル収束率の最大化の観点から,最適カット層選択のためのアルゴリズムを提案する。
性能評価の結果,提案アルゴリズムはEMGパターン認識タスクの収束を著しく加速し,補綴装置制御の改善を図っている。
関連論文リスト
- Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
本稿では,教師なし・弱教師付き学習によるWSIレベルラベルのみを用いた頚部細胞病理学WSI分類のための効率的なフレームワークを提案する。
CSDおよびFNAC 2019データセットで実施された実験は、提案手法が様々なMIL手法の性能を高め、最先端(SOTA)性能を達成することを示した。
論文 参考訳(メタデータ) (2024-07-16T08:21:54Z) - Adaptive Layer Splitting for Wireless LLM Inference in Edge Computing: A Model-Based Reinforcement Learning Approach [18.153641696306707]
本研究では、モデルベース強化学習(MBRL)からインスピレーションを得て、エッジとユーザ機器(UE)間の最適分割点を決定するフレームワークを提案する。
報酬代理モデルを導入することで、頻繁な性能評価の計算コストを大幅に削減できる。
論文 参考訳(メタデータ) (2024-06-03T09:41:42Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - ConvBLS: An Effective and Efficient Incremental Convolutional Broad
Learning System for Image Classification [63.49762079000726]
球状K-means(SKM)アルゴリズムと2段階マルチスケール(TSMS)機能融合に基づく畳み込み広範学習システム(ConvBLS)を提案する。
提案手法は前代未聞の効率的かつ効果的である。
論文 参考訳(メタデータ) (2023-04-01T04:16:12Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
本稿では,エッジコンピューティングパラダイムと並列分割学習(PSL)の統合を提唱する。
そこで本研究では,モデル学習を高速化するために,効率的な並列分割学習(EPSL)という革新的なPSLフレームワークを提案する。
提案するEPSLフレームワークは,目標精度を達成するために必要なトレーニング遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2023-03-26T16:09:48Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
SSLとDCのパラダイム間の相互作用に関する新しい視点を提示する。
SSL設定において、スクラッチから高密度かつゲートされたサブネットワークを同時に学習することは可能であることを示す。
密集エンコーダとゲートエンコーダの事前学習における共進化は、良好な精度と効率のトレードオフをもたらす。
論文 参考訳(メタデータ) (2023-01-22T17:12:58Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Accelerating Federated Edge Learning via Topology Optimization [41.830942005165625]
フェデレートエッジラーニング(FEEL)は、プライバシー保護の分散ラーニングを実現するための有望なパラダイムとして考えられている。
ストラグラー装置の存在により、過度の学習時間を消費する。
フェデレーション学習における不均一性問題に対処するために,新しいトポロジ最適化フェデレーション・エッジ・ラーニング(TOFEL)手法を提案する。
論文 参考訳(メタデータ) (2022-04-01T14:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。