Convergence Rate Maximization for Split Learning-based Control of EMG Prosthetic Devices
- URL: http://arxiv.org/abs/2401.03233v3
- Date: Sun, 12 May 2024 21:39:54 GMT
- Title: Convergence Rate Maximization for Split Learning-based Control of EMG Prosthetic Devices
- Authors: Matea Marinova, Daniel Denkovski, Hristijan Gjoreski, Zoran Hadzi-Velkov, Valentin Rakovic,
- Abstract summary: Split Learning (SL) is a promising Distributed Learning approach in electromyography (EMG) based prosthetic control.
This paper presents an algorithm for optimal cut layer selection in terms of maximizing the convergence rate of the model.
- Score: 2.432653781859026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Split Learning (SL) is a promising Distributed Learning approach in electromyography (EMG) based prosthetic control, due to its applicability within resource-constrained environments. Other learning approaches, such as Deep Learning and Federated Learning (FL), provide suboptimal solutions, since prosthetic devices are extremely limited in terms of processing power and battery life. The viability of implementing SL in such scenarios is caused by its inherent model partitioning, with clients executing the smaller model segment. However, selecting an inadequate cut layer hinders the training process in SL systems. This paper presents an algorithm for optimal cut layer selection in terms of maximizing the convergence rate of the model. The performance evaluation demonstrates that the proposed algorithm substantially accelerates the convergence in an EMG pattern recognition task for improving prosthetic device control.
Related papers
- Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control.
We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
arXiv Detail & Related papers (2024-10-07T23:38:58Z) - An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
We propose an efficient framework for cervical cytopathology WSI classification using only WSI-level labels through unsupervised and weakly supervised learning.
Experiments conducted on the CSD and FNAC 2019 datasets demonstrate that the proposed method enhances the performance of various MIL methods and achieves state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-07-16T08:21:54Z) - Adaptive Layer Splitting for Wireless LLM Inference in Edge Computing: A Model-Based Reinforcement Learning Approach [18.153641696306707]
This study introduces a framework taking inspiration from model-based reinforcement learning (MBRL) to determine the optimal splitting point across the edge and user equipment (UE)
By incorporating a reward surrogate model, our approach significantly reduces the computational cost of frequent performance evaluations.
arXiv Detail & Related papers (2024-06-03T09:41:42Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - ConvBLS: An Effective and Efficient Incremental Convolutional Broad
Learning System for Image Classification [63.49762079000726]
We propose a convolutional broad learning system (ConvBLS) based on the spherical K-means (SKM) algorithm and two-stage multi-scale (TSMS) feature fusion.
Our proposed ConvBLS method is unprecedentedly efficient and effective.
arXiv Detail & Related papers (2023-04-01T04:16:12Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Accelerating Federated Edge Learning via Topology Optimization [41.830942005165625]
Federated edge learning (FEEL) is envisioned as a promising paradigm to achieve privacy-preserving distributed learning.
It consumes excessive learning time due to the existence of straggler devices.
A novel topology-optimized federated edge learning (TOFEL) scheme is proposed to tackle the heterogeneity issue in federated learning.
arXiv Detail & Related papers (2022-04-01T14:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.