An efficient framework based on large foundation model for cervical cytopathology whole slide image screening
- URL: http://arxiv.org/abs/2407.11486v1
- Date: Tue, 16 Jul 2024 08:21:54 GMT
- Title: An efficient framework based on large foundation model for cervical cytopathology whole slide image screening
- Authors: Jialong Huang, Gaojie Li, Shichao Kan, Jianfeng Liu, Yixiong Liang,
- Abstract summary: We propose an efficient framework for cervical cytopathology WSI classification using only WSI-level labels through unsupervised and weakly supervised learning.
Experiments conducted on the CSD and FNAC 2019 datasets demonstrate that the proposed method enhances the performance of various MIL methods and achieves state-of-the-art (SOTA) performance.
- Score: 13.744580492120749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current cervical cytopathology whole slide image (WSI) screening primarily relies on detection-based approaches, which are limited in performance due to the expense and time-consuming annotation process. Multiple Instance Learning (MIL), a weakly supervised approach that relies solely on bag-level labels, can effectively alleviate these challenges. Nonetheless, MIL commonly employs frozen pretrained models or self-supervised learning for feature extraction, which suffers from low efficacy or inefficiency. In this paper, we propose an efficient framework for cervical cytopathology WSI classification using only WSI-level labels through unsupervised and weakly supervised learning. Given the sparse and dispersed nature of abnormal cells within cytopathological WSIs, we propose a strategy that leverages the pretrained foundation model to filter the top$k$ high-risk patches. Subsequently, we suggest parameter-efficient fine-tuning (PEFT) of a large foundation model using contrastive learning on the filtered patches to enhance its representation ability for task-specific signals. By training only the added linear adapters, we enhance the learning of patch-level features with substantially reduced time and memory consumption. Experiments conducted on the CSD and FNAC 2019 datasets demonstrate that the proposed method enhances the performance of various MIL methods and achieves state-of-the-art (SOTA) performance. The code and trained models are publicly available at https://github.com/CVIU-CSU/TCT-InfoNCE.
Related papers
- SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training [68.7896349660824]
We present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT.
Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Alignment (S++) framework.
Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Alignment to align the disjoint classification layers in a post-hoc fashion.
arXiv Detail & Related papers (2024-08-15T17:50:07Z) - NearbyPatchCL: Leveraging Nearby Patches for Self-Supervised Patch-Level
Multi-Class Classification in Whole-Slide Images [10.8479107614771]
Whole-slide image (WSI) analysis plays a crucial role in cancer diagnosis and treatment.
In this paper, we introduce Nearby Patch Contrastive Learning (NearbyPatchCL), a novel self-supervised learning method.
Our method significantly outperforms the supervised baseline and state-of-the-art SSL methods with top-1 classification accuracy of 87.56%.
arXiv Detail & Related papers (2023-12-12T18:24:44Z) - LESS: Label-efficient Multi-scale Learning for Cytological Whole Slide
Image Screening [19.803614403803962]
We propose a weakly-supervised Label-Efficient WSI Screening method, dubbed LESS, for cytological WSI analysis with only slide-level labels.
We provide appropriate supervision by using slide-level labels to improve the learning of patch-level features.
It outperforms state-of-the-art MIL methods on pathology WSIs and realizes automatic cytological WSI cancer screening.
arXiv Detail & Related papers (2023-06-06T05:09:20Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - TAAL: Test-time Augmentation for Active Learning in Medical Image
Segmentation [7.856339385917824]
This paper proposes Test-time Augmentation for Active Learning (TAAL), a novel semi-supervised active learning approach for segmentation.
Our results on a publicly-available dataset of cardiac images show that TAAL outperforms existing baseline methods in both fully-supervised and semi-supervised settings.
arXiv Detail & Related papers (2023-01-16T22:19:41Z) - Benchmarking Self-Supervised Learning on Diverse Pathology Datasets [10.868779327544688]
Self-supervised learning has shown to be an effective method for utilizing unlabeled data.
We execute the largest-scale study of SSL pre-training on pathology image data.
For the first time, we apply SSL to the challenging task of nuclei instance segmentation.
arXiv Detail & Related papers (2022-12-09T06:38:34Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Feature Re-calibration based MIL for Whole Slide Image Classification [7.92885032436243]
Whole slide image (WSI) classification is a fundamental task for the diagnosis and treatment of diseases.
We propose to re-calibrate the distribution of a WSI bag (instances) by using the statistics of the max-instance (critical) feature.
We employ a position encoding module (PEM) to model spatial/morphological information, and perform pooling by multi-head self-attention (PSMA) with a Transformer encoder.
arXiv Detail & Related papers (2022-06-22T07:00:39Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results.
Few-shot segmentation is proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples.
Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information.
arXiv Detail & Related papers (2020-08-04T10:41:32Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.