論文の概要: RustNeRF: Robust Neural Radiance Field with Low-Quality Images
- arxiv url: http://arxiv.org/abs/2401.03257v1
- Date: Sat, 6 Jan 2024 16:54:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 19:38:11.192942
- Title: RustNeRF: Robust Neural Radiance Field with Low-Quality Images
- Title(参考訳): rustnerf: 低品質の画像を持つロバストなニューラルラジアンスフィールド
- Authors: Mengfei Li, Ming Lu, Xiaofang Li, Shanghang Zhang
- Abstract要約: 実世界の高品質ニューラルネットワーク(NeRF)のためのRustNeRFを提案する。
実世界の入力下でのNeRFのロバスト性を改善するために,実世界の劣化モデリングを取り入れた3D対応前処理ネットワークを訓練する。
本稿では,画像の劣化と復元に伴う情報損失に対処するための,暗黙的な多視点ガイダンスを提案する。
- 参考スコア(独自算出の注目度): 29.289408956815727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work on Neural Radiance Fields (NeRF) exploits multi-view 3D
consistency, achieving impressive results in 3D scene modeling and
high-fidelity novel-view synthesis. However, there are limitations. First,
existing methods assume enough high-quality images are available for training
the NeRF model, ignoring real-world image degradation. Second, previous methods
struggle with ambiguity in the training set due to unmodeled inconsistencies
among different views. In this work, we present RustNeRF for real-world
high-quality NeRF. To improve NeRF's robustness under real-world inputs, we
train a 3D-aware preprocessing network that incorporates real-world degradation
modeling. We propose a novel implicit multi-view guidance to address
information loss during image degradation and restoration. Extensive
experiments demonstrate RustNeRF's advantages over existing approaches under
real-world degradation. The code will be released.
- Abstract(参考訳): neural radiance fields (nerf) に関する最近の研究は、マルチビュー3d一貫性を利用して、3dシーンモデリングと高忠実度新規ビュー合成で印象的な結果を得る。
しかし、制限がある。
まず、既存の手法では、実際の画像劣化を無視して、NeRFモデルのトレーニングに十分な高品質な画像が利用できると仮定する。
第2に、異なる視点の非モデル的不整合により、トレーニングセットの曖昧さに悩まされていた。
本研究では,RustNeRFを実世界の高品質なNeRFに適用する。
実世界の入力下でのNeRFの堅牢性を改善するために,実世界の劣化モデリングを取り入れた3D対応前処理ネットワークを訓練する。
画像の劣化と復元に伴う情報損失に対処するための暗黙的多視点ガイダンスを提案する。
大規模な実験は、RustNeRFの現実の劣化下での既存アプローチに対するアドバンテージを実証している。
コードはリリースされます。
関連論文リスト
- Taming Latent Diffusion Model for Neural Radiance Field Inpainting [63.297262813285265]
ニューラル・ラジアンス・フィールド(NeRF)は多視点画像からの3次元再構成の表現である。
本研究では,シーンごとのカスタマイズによる拡散モデルの傾向の緩和と,マスキングトレーニングによるテクスチャシフトの緩和を提案する。
我々のフレームワークは、様々な現実世界のシーンに最先端のNeRF塗装結果をもたらす。
論文 参考訳(メタデータ) (2024-04-15T17:59:57Z) - ReconFusion: 3D Reconstruction with Diffusion Priors [104.73604630145847]
本稿では,数枚の写真を用いて現実のシーンを再構成するReconFusionを提案する。
提案手法は,合成および多視点データセットに基づいて訓練された新規なビュー合成に先立って拡散を利用する。
本手法は,観測領域の外観を保ちながら,非拘束領域における現実的な幾何学とテクスチャを合成する。
論文 参考訳(メタデータ) (2023-12-05T18:59:58Z) - From NeRFLiX to NeRFLiX++: A General NeRF-Agnostic Restorer Paradigm [57.73868344064043]
我々は、劣化駆動の視点間ミキサーを学習する一般的なNeRF-Agnostic restorerパラダイムであるNeRFLiXを提案する。
また、より強力な2段階のNeRF分解シミュレータとより高速なビューポイントミキサーを備えたNeRFLiX++を提案する。
NeRFLiX++は、ノイズの多い低解像度のNeRFレンダリングビューからフォトリアリスティックな超高解像度出力を復元することができる。
論文 参考訳(メタデータ) (2023-06-10T09:19:19Z) - Improving Neural Radiance Fields with Depth-aware Optimization for Novel
View Synthesis [12.3338393483795]
SfMNeRFは,新規な視点の合成と3次元シーン形状の再構成を行う手法である。
SfMNeRFは、エピポーラ性、光度整合性、深さの滑らかさ、および3Dシーン構造を明示的に再構成するためにマッチ位置制約を用いる。
2つの公開データセットの実験では、SfMNeRFが最先端のアプローチを上回ることが示されている。
論文 参考訳(メタデータ) (2023-04-11T13:37:17Z) - NeRFLiX: High-Quality Neural View Synthesis by Learning a
Degradation-Driven Inter-viewpoint MiXer [44.220611552133036]
我々は、分解駆動の視点間ミキサーを学習し、NeRFLiXを提案する。
また,高度に関連した高品質な訓練画像の融合が可能な視点間集約フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-13T08:36:30Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
単一の画像からの新しいビュー合成には、オブジェクトやシーンの隠蔽領域を推論すると同時に、入力とのセマンティックおよび物理的整合性を同時に維持する必要がある。
そこで我々は,NerfDiffを提案する。NerfDiffは3D対応条件拡散モデル(CDM)の知識を,テスト時に仮想ビューの集合を合成・精製することで,NeRFに抽出することでこの問題に対処する。
さらに,CDMサンプルから3次元一貫した仮想ビューを同時に生成し,改良された仮想ビューに基づいてNeRFを微調整する新しいNeRF誘導蒸留アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-20T17:12:00Z) - BAD-NeRF: Bundle Adjusted Deblur Neural Radiance Fields [9.744593647024253]
我々は、新しいバンドルを調整した deblur Neural Radiance Fields (BAD-NeRF) を提案する。
BAD-NeRFは、激しい動きのぼやけた画像や不正確なカメラのポーズに対して堅牢である。
提案手法は、運動ぼかし画像の物理画像形成過程をモデル化し、NeRFのパラメータを共同で学習する。
論文 参考訳(メタデータ) (2022-11-23T10:53:37Z) - AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware
Training [100.33713282611448]
我々は、高分解能データによるNeRFのトレーニングに関する最初のパイロット研究を行う。
本稿では,多層パーセプトロンと畳み込み層との結合を含む,対応する解を提案する。
私たちのアプローチは、明らかなトレーニング/テストコストを導入することなく、ほぼ無償です。
論文 参考訳(メタデータ) (2022-11-17T17:22:28Z) - ActiveNeRF: Learning where to See with Uncertainty Estimation [36.209200774203005]
近年,Neural Radiance Fields (NeRF) は,3次元シーンの再構成や,スパース2次元画像からの新規ビューの合成に有望な性能を示した。
本稿では,制約のある入力予算で3Dシーンをモデル化することを目的とした,新しい学習フレームワークであるActiveNeRFを提案する。
論文 参考訳(メタデータ) (2022-09-18T12:09:15Z) - NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction [50.54946139497575]
我々は,NeRF と TSDF をベースとした核融合技術の利点を組み合わせて,大規模再構築とフォトリアリスティックレンダリングを実現する手法であるNeRFusion を提案する。
我々は,大規模な屋内・小規模の両方の物体シーンにおいて,NeRFの最先端性を達成し,NeRFや他の最近の手法よりも大幅に高速に再現できることを実証した。
論文 参考訳(メタデータ) (2022-03-21T18:56:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。