論文の概要: Malla: Demystifying Real-world Large Language Model Integrated Malicious
Services
- arxiv url: http://arxiv.org/abs/2401.03315v1
- Date: Sat, 6 Jan 2024 22:25:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 19:27:01.323141
- Title: Malla: Demystifying Real-world Large Language Model Integrated Malicious
Services
- Title(参考訳): Malla: 現実の大規模言語モデル統合型悪意サービス
- Authors: Zilong Lin, Jian Cui, Xiaojing Liao, XiaoFeng Wang
- Abstract要約: 我々は、212の現実世界のMallasに関する最初の体系的研究を行い、地下市場におけるその増殖を明らかにした。
我々の研究は、Mallaエコシステムを明らかにし、その大きな成長と今日の公共LLMサービスへの影響を明らかにします。
- 参考スコア(独自算出の注目度): 15.612452130692693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The underground exploitation of large language models (LLMs) for malicious
services (i.e., Malla) is witnessing an uptick, amplifying the cyber threat
landscape and posing questions about the trustworthiness of LLM technologies.
However, there has been little effort to understand this new cybercrime, in
terms of its magnitude, impact, and techniques. In this paper, we conduct the
first systematic study on 212 real-world Mallas, uncovering their proliferation
in underground marketplaces and exposing their operational modalities. Our
study discloses the Malla ecosystem, revealing its significant growth and
impact on today's public LLM services. Through examining 212 Mallas, we
uncovered eight backend LLMs used by Mallas, along with 182 prompts that
circumvent the protective measures of public LLM APIs. We further demystify the
tactics employed by Mallas, including the abuse of uncensored LLMs and the
exploitation of public LLM APIs through jailbreak prompts. Our findings enable
a better understanding of the real-world exploitation of LLMs by
cybercriminals, offering insights into strategies to counteract this
cybercrime.
- Abstract(参考訳): 大規模言語モデル(LLM)の悪意あるサービス(すなわちMalla)に対する地下での搾取は、サイバー脅威の風景を増幅し、LLM技術の信頼性に関する疑問を呈している。
しかし、この新たなサイバー犯罪を、その規模、影響、技術の観点から理解する努力はほとんどなかった。
本稿では,212の現実世界のMallasに関する最初の体系的研究を行い,地下市場におけるMallasの増殖を明らかにする。
我々の研究は、Mallaエコシステムを明らかにし、その大きな成長と今日の公共LLMサービスへの影響を明らかにします。
Mallas 212 を調査した結果,Mallas が使用する 8 つのバックエンド LLM と,公共 LLM API の保護対策を回避する 182 のプロンプトが発見された。
脱獄プロンプトによる無検閲LLMの悪用や、公開LLM APIの悪用など、Mallasが採用した戦術をさらに軽視する。
今回の知見は,サイバー犯罪者によるllmの実世界の活用をよりよく理解し,このサイバー犯罪に対抗するための戦略に関する洞察を提供する。
関連論文リスト
- When LLMs Go Online: The Emerging Threat of Web-Enabled LLMs [26.2943792874156]
個人データを含むサイバー攻撃における大規模言語モデル(LLM)の誤用に関連するリスクについて検討する。
具体的には,サイバーアタックの実施を指示されたLLMエージェントがいかに強力かを理解することを目的としている。
本稿では,PII(Personally Identible Information)の収集,偽造投稿の生成,スピアフィッシングメールの作成の3つの攻撃シナリオについて検討する。
論文 参考訳(メタデータ) (2024-10-18T16:16:34Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - Transforming Computer Security and Public Trust Through the Exploration of Fine-Tuning Large Language Models [0.0]
Mallasは、大きな言語モデル(LLM)を悪用する悪意のあるサービスである。
本稿では,様々な事前学習言語モデルとその効率と脆弱性を検証し,Mallasの増殖について考察する。
論文 参考訳(メタデータ) (2024-06-02T06:10:31Z) - The Wolf Within: Covert Injection of Malice into MLLM Societies via an MLLM Operative [55.08395463562242]
MLLM(Multimodal Large Language Models)は、AGI(Artificial General Intelligence)の新たな境界を常に定義している。
本稿では,MLLM社会において,悪意のあるコンテンツの間接的伝播という新たな脆弱性について検討する。
論文 参考訳(メタデータ) (2024-02-20T23:08:21Z) - Purifying Large Language Models by Ensembling a Small Language Model [39.57304668057076]
未処理データによる負の効果からLCMを浄化する簡易かつ容易に実装できる手法を提案する。
良性および小言語モデル(SLM)を用いたLLMのアンサンブルの有効性を実証的に検証した。
論文 参考訳(メタデータ) (2024-02-19T14:00:39Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly [21.536079040559517]
大規模言語モデル(LLM)は、自然言語の理解と生成に革命をもたらした。
本稿では,LLMとセキュリティとプライバシの交わりについて考察する。
論文 参考訳(メタデータ) (2023-12-04T16:25:18Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。