Optimal quantum reservoir computing for market forecasting: An
application to fight food price crises
- URL: http://arxiv.org/abs/2401.03347v1
- Date: Wed, 22 Nov 2023 14:22:47 GMT
- Title: Optimal quantum reservoir computing for market forecasting: An
application to fight food price crises
- Authors: L. Domingo, M. Grande, G. Carlo, F. Borondo, and J. Borondo
- Abstract summary: The emerging technology of quantum reservoir computing (QRC) stands out for its exceptional efficiency and adaptability.
By harnessing the power of quantum computing, it holds a great potential to untangle complex economic markets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The emerging technology of quantum reservoir computing (QRC) stands out in
the noisy-intermediate scale quantum era (NISQ) for its exceptional efficiency
and adaptability. By harnessing the power of quantum computing, it holds a
great potential to untangle complex economic markets, as demonstrated here in
an application to food price crisis prediction - a critical effort in combating
food waste and establishing sustainable food chains. Nevertheless, a pivotal
consideration for its success is the optimal design of the quantum reservoirs,
ensuring both high performance and compatibility with current devices. In this
paper, we provide an efficient criterion for that purpose, based on the
complexity of the reservoirs. Our results emphasize the crucial role of optimal
design in the algorithm performance, especially in the absence of external
regressor variables, showcasing the potential for novel insights and
transformative applications in the field of time series prediction using
quantum computing.
Related papers
- Classical and quantum reservoir computing: development and applications
in machine learning [0.0]
Reservoir computing is a novel machine learning algorithm that uses a nonlinear dynamical system to learn complex temporal patterns from data.
The research demonstrates the algorithm's robustness and adaptability across very different domains, including agricultural time series forecasting.
The last contribution of this thesis focuses on optimizing algorithm designs for quantum reservoir computing.
arXiv Detail & Related papers (2023-10-11T13:01:05Z) - Quantum reservoir complexity by Krylov evolution approach [0.0]
We introduce a precise quantitative method, with strong physical foundations based on the Krylov evolution, to assess the wanted good performance in machine learning tasks.
Our results show that the Krylov approach to complexity strongly correlates with quantum reservoir performance, making it a powerful tool in the quest for optimally designed quantum reservoirs.
arXiv Detail & Related papers (2023-10-01T21:06:25Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Configured Quantum Reservoir Computing for Multi-Task Machine Learning [24.698475208639586]
We explore the dynamics of programmable NISQ devices for quantum reservoir computing.
A single configured quantum reservoir can simultaneously learn multiple tasks.
We highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance.
arXiv Detail & Related papers (2023-03-30T18:00:02Z) - Preparing random state for quantum financing with quantum walks [1.2074552857379273]
We propose an efficient approach to load classical data into quantum states that can be executed by quantum computers or quantum simulators on classical hardware.
A practical example of implementing SSQW using Qiskit has been released as open-source software.
Showing its potential as a promising method for generating desired probability amplitude distributions highlights the potential application of SSQW in option pricing through quantum simulation.
arXiv Detail & Related papers (2023-02-24T08:01:35Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.