Quantum Annealing for Single Image Super-Resolution
- URL: http://arxiv.org/abs/2304.08924v1
- Date: Tue, 18 Apr 2023 11:57:15 GMT
- Title: Quantum Annealing for Single Image Super-Resolution
- Authors: Han Yao Choong, Suryansh Kumar, Luc Van Gool
- Abstract summary: We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
- Score: 86.69338893753886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a quantum computing-based algorithm to solve the single
image super-resolution (SISR) problem. One of the well-known classical
approaches for SISR relies on the well-established patch-wise sparse modeling
of the problem. Yet, this field's current state of affairs is that deep neural
networks (DNNs) have demonstrated far superior results than traditional
approaches. Nevertheless, quantum computing is expected to become increasingly
prominent for machine learning problems soon. As a result, in this work, we
take the privilege to perform an early exploration of applying a quantum
computing algorithm to this important image enhancement problem, i.e., SISR.
Among the two paradigms of quantum computing, namely universal gate quantum
computing and adiabatic quantum computing (AQC), the latter has been
successfully applied to practical computer vision problems, in which quantum
parallelism has been exploited to solve combinatorial optimization efficiently.
This work demonstrates formulating quantum SISR as a sparse coding optimization
problem, which is solved using quantum annealers accessed via the D-Wave Leap
platform. The proposed AQC-based algorithm is demonstrated to achieve improved
speed-up over a classical analog while maintaining comparable SISR accuracy.
Related papers
- Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Unlocking Quantum Optimization: A Use Case Study on NISQ Systems [0.0]
This paper considers two industrial relevant use cases: one in the realm of optimizing charging schedules for electric vehicles, the other concerned with the optimization of truck routes.
Our central contribution are systematic series of examples derived from these uses cases that we execute on different processors of the gate-based quantum computers of IBM as well as on the quantum annealer of D-Wave.
arXiv Detail & Related papers (2024-04-10T17:08:07Z) - Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm [14.554010382366302]
Quantum Approximate Optimization (QAOA) stands out for its potential to efficiently solve the Max-Cut problem.
We use Graph Neural Networks (GNN) as a warm-start technique to optimize QAOA, using GNN as a warm-start technique.
Our findings show GNN's potential in improving QAOA performance, opening new avenues for hybrid quantum-classical approaches in quantum computing.
arXiv Detail & Related papers (2024-03-05T20:23:25Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - State-Averaged Orbital-Optimized VQE: A quantum algorithm for the
democratic description of ground and excited electronic states [0.0]
The SA-OO-VQE package aims to answer both problems with its hybrid quantum-classical conception based on a typical Variational Quantum Eigensolver approach.
The SA-OO-VQE has the ability to treat degenerate (or quasi-degenerate) states on the same footing, thus avoiding known numerical optimization problems around avoided crossings or conical intersections.
arXiv Detail & Related papers (2024-01-22T12:16:37Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.