Grimoire is All You Need for Enhancing Large Language Models
- URL: http://arxiv.org/abs/2401.03385v2
- Date: Wed, 10 Jan 2024 08:30:24 GMT
- Title: Grimoire is All You Need for Enhancing Large Language Models
- Authors: Ding Chen, Shichao Song, Qingchen Yu, Zhiyu Li, Wenjin Wang, Feiyu
Xiong, Bo Tang
- Abstract summary: We propose a method SLEICL that involves learning from examples using strong language models and then summarizing and transferring these learned skills to weak language models for inference and application.
Our experiments, conducted on up to eight datasets with five language models, demonstrate that weak language models achieve consistent improvement over their own zero-shot or few-shot capabilities using the SLEICL method.
- Score: 13.111331915718527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-context Learning (ICL) is one of the key methods for enhancing the
performance of large language models on specific tasks by providing a set of
few-shot examples. However, the ICL capability of different types of models
shows significant variation due to factors such as model architecture, volume
of learning data, and the size of parameters. Generally, the larger the model's
parameter size and the more extensive the learning data, the stronger its ICL
capability. In this paper, we propose a method SLEICL that involves learning
from examples using strong language models and then summarizing and
transferring these learned skills to weak language models for inference and
application. This ensures the stability and effectiveness of ICL. Compared to
directly enabling weak language models to learn from prompt examples, SLEICL
reduces the difficulty of ICL for these models. Our experiments, conducted on
up to eight datasets with five language models, demonstrate that weak language
models achieve consistent improvement over their own zero-shot or few-shot
capabilities using the SLEICL method. Some weak language models even surpass
the performance of GPT4-1106-preview (zero-shot) with the aid of SLEICL.
Related papers
- Cross-model Control: Improving Multiple Large Language Models in One-time Training [34.98931804630706]
Cross-model Control (CMC) is a method that improves multiple large language models in one-time training.
Based on this insight, we incorporate a tiny language model with a minimal number of parameters.
We propose a novel token mapping strategy named PM-MinED to make this tiny language model applicable to models with different vocabularies.
arXiv Detail & Related papers (2024-10-23T06:52:09Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
This paper presents ML-SUPERB2.0, which is a new benchmark for evaluating pre-trained SSL and supervised speech models.
We find performance improvements over the setup of ML-SUPERB, but performance depends on the downstream model design.
Also, we find large performance differences between languages and datasets, suggesting the need for more targeted approaches.
arXiv Detail & Related papers (2024-06-12T21:01:26Z) - Emergent Abilities in Reduced-Scale Generative Language Models [10.51168925267033]
Large language models can solve new tasks without task-specific fine-tuning.
This ability is considered an emergent ability and is primarily seen in large language models with billions of parameters.
This study investigates if such emergent properties are strictly tied to model size or can be demonstrated by smaller models trained on reduced-scale data.
arXiv Detail & Related papers (2024-04-02T18:00:28Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - Small Models are Valuable Plug-ins for Large Language Models [65.29370906766997]
Large language models (LLMs) such as GPT-3 and GPT-4 are powerful but their weights are often publicly unavailable.
We propose Super In-Context Learning (SuperICL) which allows black-box LLMs to work with locally fine-tuned smaller models.
arXiv Detail & Related papers (2023-05-15T17:59:01Z) - Improving Massively Multilingual ASR With Auxiliary CTC Objectives [40.10307386370194]
We introduce our work on improving performance on FLEURS, a 102-language open ASR benchmark.
We investigate techniques inspired from recent Connectionist Temporal Classification ( CTC) studies to help the model handle the large number of languages.
Our state-of-the-art systems using self-supervised models with the Conformer architecture improve over the results of prior work on FLEURS by a relative 28.4% CER.
arXiv Detail & Related papers (2023-02-24T18:59:51Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - PaLM: Scaling Language Modeling with Pathways [180.69584031908113]
We trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM.
We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods.
We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks.
arXiv Detail & Related papers (2022-04-05T16:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.