Cross-model Control: Improving Multiple Large Language Models in One-time Training
- URL: http://arxiv.org/abs/2410.17599v1
- Date: Wed, 23 Oct 2024 06:52:09 GMT
- Title: Cross-model Control: Improving Multiple Large Language Models in One-time Training
- Authors: Jiayi Wu, Hao Sun, Hengyi Cai, Lixin Su, Shuaiqiang Wang, Dawei Yin, Xiang Li, Ming Gao,
- Abstract summary: Cross-model Control (CMC) is a method that improves multiple large language models in one-time training.
Based on this insight, we incorporate a tiny language model with a minimal number of parameters.
We propose a novel token mapping strategy named PM-MinED to make this tiny language model applicable to models with different vocabularies.
- Score: 34.98931804630706
- License:
- Abstract: The number of large language models (LLMs) with varying parameter scales and vocabularies is increasing. While they deliver powerful performance, they also face a set of common optimization needs to meet specific requirements or standards, such as instruction following or avoiding the output of sensitive information from the real world. However, how to reuse the fine-tuning outcomes of one model to other models to reduce training costs remains a challenge. To bridge this gap, we introduce Cross-model Control (CMC), a method that improves multiple LLMs in one-time training with a portable tiny language model. Specifically, we have observed that the logit shift before and after fine-tuning is remarkably similar across different models. Based on this insight, we incorporate a tiny language model with a minimal number of parameters. By training alongside a frozen template LLM, the tiny model gains the capability to alter the logits output by the LLMs. To make this tiny language model applicable to models with different vocabularies, we propose a novel token mapping strategy named PM-MinED. We have conducted extensive experiments on instruction tuning and unlearning tasks, demonstrating the effectiveness of CMC. Our code is available at https://github.com/wujwyi/CMC.
Related papers
- LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - ArthModel: Enhance Arithmetic Skills to Large Language Model [0.0]
This work provides different ways of thinking, training and using a language model.
The codes and models will be released at urlhttps://www.eteced.com/eteced/arithmetic_finetuning_v1.
arXiv Detail & Related papers (2023-11-30T15:06:50Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
This research examines vocabulary trimming (VT) inspired by restricting embedding entries to the language of interest to bolster time and memory efficiency.
We apply two languages to trim the full vocabulary - Unicode-based script filtering and corpus-based selection - to different language families and sizes.
It is found that VT reduces the memory usage of small models by nearly 50% and has an upper bound of 25% improvement in generation speed.
arXiv Detail & Related papers (2023-11-16T09:35:50Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
We propose a novel framework using examples in comparison to teach LLMs to learn translation.
Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning.
Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations.
arXiv Detail & Related papers (2023-07-10T08:15:40Z) - MiniLLM: Knowledge Distillation of Large Language Models [112.93051247165089]
Knowledge Distillation (KD) is a promising technique for reducing the high computational demand of large language models (LLMs)
We propose a KD approach that distills LLMs into smaller language models.
Our method is scalable for different model families with 120M to 13B parameters.
arXiv Detail & Related papers (2023-06-14T14:44:03Z) - Contrastive Alignment of Vision to Language Through Parameter-Efficient
Transfer Learning [60.26952378997713]
Contrastive vision-language models (e.g. CLIP) are created by updating all the parameters of a vision model and language model through contrastive training.
We show that a minimal set of parameter updates ($$7%) can achieve the same performance as full-model training.
We describe a series of experiments: we show that existing knowledge is conserved more strongly in parameter-efficient training.
arXiv Detail & Related papers (2023-03-21T14:12:08Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Mini-Model Adaptation: Efficiently Extending Pretrained Models to New
Languages via Aligned Shallow Training [36.5936227129021]
It is possible to expand pretrained Masked Language Models to new languages by learning a new set of embeddings, while keeping the transformer body frozen.
We propose mini-model adaptation, a compute-efficient alternative that builds a shallow mini-model from a fraction of a large model's parameters.
New language-specific embeddings can then be efficiently trained over the mini-model and plugged into the aligned large model for rapid cross-lingual transfer.
arXiv Detail & Related papers (2022-12-20T18:17:28Z) - Zero-Shot Learners for Natural Language Understanding via a Unified
Multiple Choice Perspective [26.41585967095811]
Zero-shot learning aims to train a model on a given task such that it can address new learning tasks without any additional training.
Our approach converts zero-shot learning into multiple-choice tasks, avoiding problems in commonly used large-scale generative models such as FLAN.
Our approach shows state-of-the-art performance on several benchmarks and produces satisfactory results on tasks such as natural language inference and text classification.
arXiv Detail & Related papers (2022-10-16T17:24:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.