Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects
- URL: http://arxiv.org/abs/2401.03428v1
- Date: Sun, 7 Jan 2024 09:08:24 GMT
- Title: Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects
- Authors: Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xiangrui Meng, Sirui Hong,
Wenhao Li, Zihao Wang, Zekai Wang, Feng Yin, Junhua Zhao, Xiuqiang He
- Abstract summary: This paper surveys current research to provide an in-depth overview of intelligent agents within single and multi-agent systems.
It covers their definitions, research frameworks, and foundational components such as their composition, cognitive and planning methods, tool utilization, and responses to environmental feedback.
We conclude by envisioning prospects for LLM-based agents, considering the evolving landscape of AI and natural language processing.
- Score: 32.91556128291915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent agents stand out as a potential path toward artificial general
intelligence (AGI). Thus, researchers have dedicated significant effort to
diverse implementations for them. Benefiting from recent progress in large
language models (LLMs), LLM-based agents that use universal natural language as
an interface exhibit robust generalization capabilities across various
applications -- from serving as autonomous general-purpose task assistants to
applications in coding, social, and economic domains, LLM-based agents offer
extensive exploration opportunities. This paper surveys current research to
provide an in-depth overview of LLM-based intelligent agents within
single-agent and multi-agent systems. It covers their definitions, research
frameworks, and foundational components such as their composition, cognitive
and planning methods, tool utilization, and responses to environmental
feedback. We also delve into the mechanisms of deploying LLM-based agents in
multi-agent systems, including multi-role collaboration, message passing, and
strategies to alleviate communication issues between agents. The discussions
also shed light on popular datasets and application scenarios. We conclude by
envisioning prospects for LLM-based agents, considering the evolving landscape
of AI and natural language processing.
Related papers
- AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
This study enhances an LLM-based web agent by simply refining its observation and action space.
AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively.
arXiv Detail & Related papers (2024-10-17T17:50:38Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - LLM-based Multi-Agent Reinforcement Learning: Current and Future Directions [8.55917897789612]
We focus on the cooperative tasks of multiple agents with a common goal and communication among them.
We also consider human-in/on-the-loop scenarios enabled by the language component in the framework.
arXiv Detail & Related papers (2024-05-17T22:10:23Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
We open-source a new AI agent library, AgentLite, which simplifies research investigation into LLM agents.
AgentLite is a task-oriented framework designed to enhance the ability of agents to break down tasks.
We introduce multiple practical applications developed with AgentLite to demonstrate its convenience and flexibility.
arXiv Detail & Related papers (2024-02-23T06:25:20Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
Large Language Models (LLMs) have achieved remarkable success across a wide array of tasks.
Recently, based on the development of using one LLM as a single planning or decision-making agent, LLM-based multi-agent systems have achieved considerable progress in complex problem-solving and world simulation.
arXiv Detail & Related papers (2024-01-21T23:36:14Z) - KwaiAgents: Generalized Information-seeking Agent System with Large
Language Models [33.59597020276034]
Humans excel in critical thinking, planning, reflection, and harnessing available tools to interact with and interpret the world.
Recent advancements in large language models (LLMs) suggest that machines might also possess the aforementioned human-like capabilities.
We introduce KwaiAgents, a generalized information-seeking agent system based on LLMs.
arXiv Detail & Related papers (2023-12-08T08:11:11Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
Large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence.
This paper delivers a systematic review of the field of LLM-based autonomous agents from a holistic perspective.
We present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering.
arXiv Detail & Related papers (2023-08-22T13:30:37Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
Large Language Models (LLMs) have emerged as powerful tools for various real-world applications.
Despite their prowess, intrinsic generative abilities of LLMs may prove insufficient for handling complex tasks.
This paper proposes a structured framework tailored for LLM-based AI Agents.
arXiv Detail & Related papers (2023-08-07T09:22:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.