GLOCALFAIR: Jointly Improving Global and Local Group Fairness in Federated Learning
- URL: http://arxiv.org/abs/2401.03562v2
- Date: Wed, 02 Oct 2024 21:13:27 GMT
- Title: GLOCALFAIR: Jointly Improving Global and Local Group Fairness in Federated Learning
- Authors: Syed Irfan Ali Meerza, Luyang Liu, Jiaxin Zhang, Jian Liu,
- Abstract summary: Federated learning (FL) has emerged as a prospective solution for collaboratively learning a shared model across clients without sacrificing their data privacy.
FL tends to be biased against certain demographic groups due to the inherent FL properties, such as data heterogeneity and party selection.
We propose GFAIR, a client-server codesign that can improve global and local group fairness without the need for sensitive statistics about the client's private datasets.
- Score: 8.033939709734451
- License:
- Abstract: Federated learning (FL) has emerged as a prospective solution for collaboratively learning a shared model across clients without sacrificing their data privacy. However, the federated learned model tends to be biased against certain demographic groups (e.g., racial and gender groups) due to the inherent FL properties, such as data heterogeneity and party selection. Unlike centralized learning, mitigating bias in FL is particularly challenging as private training datasets and their sensitive attributes are typically not directly accessible. Most prior research in this field only focuses on global fairness while overlooking the local fairness of individual clients. Moreover, existing methods often require sensitive information about the client's local datasets to be shared, which is not desirable. To address these issues, we propose GLOCALFAIR, a client-server co-design fairness framework that can jointly improve global and local group fairness in FL without the need for sensitive statistics about the client's private datasets. Specifically, we utilize constrained optimization to enforce local fairness on the client side and adopt a fairness-aware clustering-based aggregation on the server to further ensure the global model fairness across different sensitive groups while maintaining high utility. Experiments on two image datasets and one tabular dataset with various state-of-the-art fairness baselines show that GLOCALFAIR can achieve enhanced fairness under both global and local data distributions while maintaining a good level of utility and client fairness.
Related papers
- WassFFed: Wasserstein Fair Federated Learning [31.135784690264888]
Federated Learning (FL) employs a training approach to address scenarios where users' data cannot be shared across clients.
We propose a Wasserstein Fair Federated Learning framework, namely WassFFed.
arXiv Detail & Related papers (2024-11-11T11:26:22Z) - Achieving Fairness Across Local and Global Models in Federated Learning [9.902848777262918]
This study introduces textttEquiFL, a novel approach designed to enhance both local and global fairness in Federated Learning environments.
textttEquiFL incorporates a fairness term into the local optimization objective, effectively balancing local performance and fairness.
We demonstrate that textttEquiFL not only strikes a better balance between accuracy and fairness locally at each client but also achieves global fairness.
arXiv Detail & Related papers (2024-06-24T19:42:16Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FedCRL: Personalized Federated Learning with Contrastive Shared Representations for Label Heterogeneity in Non-IID Data [13.146806294562474]
This paper proposes a novel personalized federated learning algorithm, named Federated Contrastive Shareable Representations (FedCoSR)
parameters of local models' shallow layers and typical local representations are both considered shareable information for the server.
To address poor performance caused by label distribution skew among clients, contrastive learning is adopted between local and global representations.
arXiv Detail & Related papers (2024-04-27T14:05:18Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - Knowledge-Aware Federated Active Learning with Non-IID Data [75.98707107158175]
We propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget.
The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the local clients.
We propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU)
arXiv Detail & Related papers (2022-11-24T13:08:43Z) - FLIS: Clustered Federated Learning via Inference Similarity for Non-IID
Data Distribution [7.924081556869144]
We present a new algorithm, FLIS, which groups the clients population in clusters with jointly trainable data distributions.
We present experimental results to demonstrate the benefits of FLIS over the state-of-the-art benchmarks on CIFAR-100/10, SVHN, and FMNIST datasets.
arXiv Detail & Related papers (2022-08-20T22:10:48Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
Federated learning (FL) allows multiple clients to collectively train a high-performance global model without sharing their private data.
We propose a novel federated learning algorithm with local drift decoupling and correction (FedDC)
Our FedDC only introduces lightweight modifications in the local training phase, in which each client utilizes an auxiliary local drift variable to track the gap between the local model parameter and the global model parameters.
Experiment results and analysis demonstrate that FedDC yields expediting convergence and better performance on various image classification tasks.
arXiv Detail & Related papers (2022-03-22T14:06:26Z) - GRP-FED: Addressing Client Imbalance in Federated Learning via
Global-Regularized Personalization [6.592268037926868]
We present Global-Regularized Personalization (GRP-FED) to tackle the data imbalanced issue.
With adaptive aggregation, the global model treats multiple clients fairly and mitigates the global long-tailed issue.
Our results show that our GRP-FED improves under both global and local scenarios.
arXiv Detail & Related papers (2021-08-31T14:09:04Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.