A Multi-objective Newton Optimization Algorithm for Hyper-Parameter
Search
- URL: http://arxiv.org/abs/2401.03580v1
- Date: Sun, 7 Jan 2024 21:12:34 GMT
- Title: A Multi-objective Newton Optimization Algorithm for Hyper-Parameter
Search
- Authors: Qinwu Xu
- Abstract summary: The algorithm is applied to search the optimal probability threshold (a vector of eight parameters) for a multiclass object detection problem of a convolutional neural network.
The algorithm produces an overall higher true positive (TP) and lower false positive (FP) rates, as compared to using the default value of 0.5.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study proposes a Newton based multiple objective optimization algorithm
for hyperparameter search. The first order differential (gradient) is
calculated using finite difference method and a gradient matrix with
vectorization is formed for fast computation. The Newton Raphson iterative
solution is used to update model parameters with iterations, and a
regularization term is included to eliminate the singularity issue. The
algorithm is applied to search the optimal probability threshold (a vector of
eight parameters) for a multiclass object detection problem of a convolutional
neural network. The algorithm quickly finds the improved parameter values to
produce an overall higher true positive (TP) and lower false positive (FP)
rates, as compared to using the default value of 0.5. In comparison, the
Bayesian optimization generates lower performance in the testing case. However,
the performance and parameter values may oscillate for some cases during
iterations, which may be due to the data driven stochastic nature of the
subject. Therefore, the optimal parameter value can be identified from a list
of iteration steps according to the optimal TP and FP results.
Related papers
- Efficient Low-rank Identification via Accelerated Iteratively Reweighted Nuclear Norm Minimization [8.879403568685499]
We introduce an adaptive updating strategy for smoothing parameters.
This behavior transforms the algorithm into one that effectively solves problems after a few iterations.
We prove the global proposed experiment, guaranteeing that every iteration is a critical one.
arXiv Detail & Related papers (2024-06-22T02:37:13Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Reducing the Variance of Gaussian Process Hyperparameter Optimization
with Preconditioning [54.01682318834995]
Preconditioning is a highly effective step for any iterative method involving matrix-vector multiplication.
We prove that preconditioning has an additional benefit that has been previously unexplored.
It simultaneously can reduce variance at essentially negligible cost.
arXiv Detail & Related papers (2021-07-01T06:43:11Z) - Slowly Varying Regression under Sparsity [5.22980614912553]
We present the framework of slowly hyper regression under sparsity, allowing regression models to exhibit slow and sparse variations.
We suggest a procedure that reformulates as a binary convex algorithm.
We show that the resulting model outperforms competing formulations in comparable times across various datasets.
arXiv Detail & Related papers (2021-02-22T04:51:44Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Parameters for the best convergence of an optimization algorithm
On-The-Fly [0.0]
This research was done in an experimental concept in which five different algorithms were tested with different objective functions.
To find the correct parameter a method called 'on-the-fly' was applied.
arXiv Detail & Related papers (2020-09-23T21:38:28Z) - Efficient hyperparameter optimization by way of PAC-Bayes bound
minimization [4.191847852775072]
We present an alternative objective that is equivalent to a Probably Approximately Correct-Bayes (PAC-Bayes) bound on the expected out-of-sample error.
We then devise an efficient gradient-based algorithm to minimize this objective.
arXiv Detail & Related papers (2020-08-14T15:54:51Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Weighted Random Search for Hyperparameter Optimization [0.0]
We introduce an improved version of Random Search (RS), used here for hyper parameter optimization of machine learning algorithms.
We generate new values for each hyper parameter with a probability of change, unlike the standard RS.
Within the same computational budget, our method yields better results than the standard RS.
arXiv Detail & Related papers (2020-04-03T15:41:22Z) - Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart
for Nonconvex Optimization [73.38702974136102]
Various types of parameter restart schemes have been proposed for accelerated algorithms to facilitate their practical convergence in rates.
In this paper, we propose an algorithm for solving nonsmooth problems.
arXiv Detail & Related papers (2020-02-26T16:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.