Disentangled Neural Relational Inference for Interpretable Motion
Prediction
- URL: http://arxiv.org/abs/2401.03599v1
- Date: Sun, 7 Jan 2024 22:49:24 GMT
- Title: Disentangled Neural Relational Inference for Interpretable Motion
Prediction
- Authors: Victoria M. Dax, Jiachen Li, Enna Sachdeva, Nakul Agarwal, and Mykel
J. Kochenderfer
- Abstract summary: We develop a variational auto-encoder framework that integrates graph-based representations and timesequence models.
Our model infers dynamic interaction graphs augmented with interpretable edge features that characterize the interactions.
We validate our approach through extensive experiments on both simulated and real-world datasets.
- Score: 38.40799770648501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective interaction modeling and behavior prediction of dynamic agents play
a significant role in interactive motion planning for autonomous robots.
Although existing methods have improved prediction accuracy, few research
efforts have been devoted to enhancing prediction model interpretability and
out-of-distribution (OOD) generalizability. This work addresses these two
challenging aspects by designing a variational auto-encoder framework that
integrates graph-based representations and time-sequence models to efficiently
capture spatio-temporal relations between interactive agents and predict their
dynamics. Our model infers dynamic interaction graphs in a latent space
augmented with interpretable edge features that characterize the interactions.
Moreover, we aim to enhance model interpretability and performance in OOD
scenarios by disentangling the latent space of edge features, thereby
strengthening model versatility and robustness. We validate our approach
through extensive experiments on both simulated and real-world datasets. The
results show superior performance compared to existing methods in modeling
spatio-temporal relations, motion prediction, and identifying time-invariant
latent features.
Related papers
- Neural Interaction Energy for Multi-Agent Trajectory Prediction [55.098754835213995]
We introduce a framework called Multi-Agent Trajectory prediction via neural interaction Energy (MATE)
MATE assesses the interactive motion of agents by employing neural interaction energy.
To bolster temporal stability, we introduce two constraints: inter-agent interaction constraint and intra-agent motion constraint.
arXiv Detail & Related papers (2024-04-25T12:47:47Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [55.65482030032804]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
Our approach infers dynamically evolving relation graphs and hypergraphs to capture the evolution of relations, which the trajectory predictor employs to generate future states.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
We study for the first time uncertainty-aware modeling of continuous-time dynamics of interacting objects.
Our model infers both independent dynamics and their interactions with reliable uncertainty estimates.
arXiv Detail & Related papers (2022-05-24T08:36:25Z) - VIRT: Improving Representation-based Models for Text Matching through
Virtual Interaction [50.986371459817256]
We propose a novel textitVirtual InteRacTion mechanism, termed as VIRT, to enable full and deep interaction modeling in representation-based models.
VIRT asks representation-based encoders to conduct virtual interactions to mimic the behaviors as interaction-based models do.
arXiv Detail & Related papers (2021-12-08T09:49:28Z) - RAIN: Reinforced Hybrid Attention Inference Network for Motion
Forecasting [34.54878390622877]
We propose a generic motion forecasting framework with dynamic key information selection and ranking based on a hybrid attention mechanism.
The framework is instantiated to handle multi-agent trajectory prediction and human motion forecasting tasks.
We validate the framework on both synthetic simulations and motion forecasting benchmarks in different domains.
arXiv Detail & Related papers (2021-08-03T06:30:30Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Convolutions for Spatial Interaction Modeling [9.408751013132624]
We consider the problem of spatial interaction modeling in the context of predicting the motion of actors around autonomous vehicles.
We revisit convolutions and show that they can demonstrate comparable performance to graph networks in modeling spatial interactions with lower latency.
arXiv Detail & Related papers (2021-04-15T00:41:30Z) - EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational
Reasoning [41.42230144157259]
We propose a generic trajectory forecasting framework with explicit relational structure recognition and prediction via latent interaction graphs.
Considering the uncertainty of future behaviors, the model is designed to provide multi-modal prediction hypotheses.
We introduce a double-stage training pipeline which not only improves training efficiency and accelerates convergence, but also enhances model performance.
arXiv Detail & Related papers (2020-03-31T02:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.