Deep Learning for Visual Neuroprosthesis
- URL: http://arxiv.org/abs/2401.03639v1
- Date: Mon, 8 Jan 2024 02:53:22 GMT
- Title: Deep Learning for Visual Neuroprosthesis
- Authors: Peter Beech, Shanshan Jia, Zhaofei Yu, Jian K. Liu
- Abstract summary: The visual pathway involves complex networks of cells and regions which contribute to the encoding and processing of visual information.
This chapter discusses the importance of visual perception and the challenges associated with understanding how visual information is encoded and represented in the brain.
- Score: 22.59701507351177
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The visual pathway involves complex networks of cells and regions which
contribute to the encoding and processing of visual information. While some
aspects of visual perception are understood, there are still many unanswered
questions regarding the exact mechanisms of visual encoding and the
organization of visual information along the pathway. This chapter discusses
the importance of visual perception and the challenges associated with
understanding how visual information is encoded and represented in the brain.
Furthermore, this chapter introduces the concept of neuroprostheses: devices
designed to enhance or replace bodily functions, and highlights the importance
of constructing computational models of the visual pathway in the
implementation of such devices. A number of such models, employing the use of
deep learning models, are outlined, and their value to understanding visual
coding and natural vision is discussed.
Related papers
- Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models [10.615012396285337]
We develop algorithms to enhance our understanding of visual processes by incorporating whole-brain activation maps.
We first compare our method with state-of-the-art approaches to decoding visual processing and show improved predictive semantic accuracy by 43%.
arXiv Detail & Related papers (2024-11-11T16:51:17Z) - Visual attention information can be traced on cortical response but not
on the retina: evidence from electrophysiological mouse data using natural
images as stimuli [0.0]
In primary visual cortex (V1), a subset of around $10%$ of the neurons responds differently to salient versus non-salient visual regions.
It appears that the retina remains naive concerning visual attention; cortical response gets to interpret visual attention information.
arXiv Detail & Related papers (2023-08-01T13:09:48Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
We propose a brain-inspired adversarial visual attention network (BI-AVAN) to characterize human visual attention directly from functional brain activity.
Our model imitates the biased competition process between attention-related/neglected objects to identify and locate the visual objects in a movie frame the human brain focuses on in an unsupervised manner.
arXiv Detail & Related papers (2022-10-27T22:20:36Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
Cortical prostheses are devices implanted in the visual cortex that attempt to restore lost vision by electrically stimulating neurons.
Currently, the vision provided by these devices is limited, and accurately predicting the visual percepts resulting from stimulation is an open challenge.
We propose to address this challenge by utilizing 'brain-like' convolutional neural networks (CNNs), which have emerged as promising models of the visual system.
arXiv Detail & Related papers (2022-09-27T17:33:19Z) - Deep Learning to See: Towards New Foundations of Computer Vision [88.69805848302266]
This book criticizes the supposed scientific progress in the field of computer vision.
It proposes the investigation of vision within the framework of information-based laws of nature.
arXiv Detail & Related papers (2022-06-30T15:20:36Z) - Peripheral Vision Transformer [52.55309200601883]
We take a biologically inspired approach and explore to model peripheral vision in deep neural networks for visual recognition.
We propose to incorporate peripheral position encoding to the multi-head self-attention layers to let the network learn to partition the visual field into diverse peripheral regions given training data.
We evaluate the proposed network, dubbed PerViT, on the large-scale ImageNet dataset and systematically investigate the inner workings of the model for machine perception.
arXiv Detail & Related papers (2022-06-14T12:47:47Z) - GAMR: A Guided Attention Model for (visual) Reasoning [7.919213739992465]
Humans continue to outperform modern AI systems in their ability to flexibly parse and understand complex visual scenes.
We present a novel module for visual reasoning, the Guided Attention Model for (visual) Reasoning (GAMR)
GAMR posits that the brain solves complex visual reasoning problems dynamically via sequences of attention shifts to select and route task-relevant visual information into memory.
arXiv Detail & Related papers (2022-06-10T07:52:06Z) - Attention Mechanisms in Computer Vision: A Survey [75.6074182122423]
We provide a comprehensive review of various attention mechanisms in computer vision.
We categorize them according to approach, such as channel attention, spatial attention, temporal attention and branch attention.
We suggest future directions for attention mechanism research.
arXiv Detail & Related papers (2021-11-15T09:18:40Z) - Visual Sensation and Perception Computational Models for Deep Learning:
State of the art, Challenges and Prospects [7.949330621850412]
visual sensation and perception refers to the process of sensing, organizing, identifying, and interpreting visual information in environmental awareness and understanding.
Computational models inspired by visual perception have the characteristics of complexity and diversity, as they come from many subjects such as cognition science, information science, and artificial intelligence.
arXiv Detail & Related papers (2021-09-08T01:51:24Z) - Constellation: Learning relational abstractions over objects for
compositional imagination [64.99658940906917]
We introduce Constellation, a network that learns relational abstractions of static visual scenes.
This work is a first step in the explicit representation of visual relationships and using them for complex cognitive procedures.
arXiv Detail & Related papers (2021-07-23T11:59:40Z) - Brain-inspired algorithms for processing of visual data [5.045960549713147]
We review approaches for image processing and computer vision based on neuro-scientific findings about the functions of some neurons in the visual cortex.
We pay particular attention to the mechanisms of inhibition of the responses of some neurons, which provide the visual system with improved stability to changing input stimuli.
arXiv Detail & Related papers (2021-03-02T10:45:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.