DME-Driver: Integrating Human Decision Logic and 3D Scene Perception in
Autonomous Driving
- URL: http://arxiv.org/abs/2401.03641v1
- Date: Mon, 8 Jan 2024 03:06:02 GMT
- Title: DME-Driver: Integrating Human Decision Logic and 3D Scene Perception in
Autonomous Driving
- Authors: Wencheng Han, Dongqian Guo, Cheng-Zhong Xu, Jianbing Shen
- Abstract summary: This paper introduces a new autonomous driving system that enhances the performance and reliability of autonomous driving system.
DME-Driver utilizes a powerful vision language model as the decision-maker and a planning-oriented perception model as the control signal generator.
By leveraging this dataset, our model achieves high-precision planning accuracy through a logical thinking process.
- Score: 65.04871316921327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of autonomous driving, two important features of autonomous
driving car systems are the explainability of decision logic and the accuracy
of environmental perception. This paper introduces DME-Driver, a new autonomous
driving system that enhances the performance and reliability of autonomous
driving system. DME-Driver utilizes a powerful vision language model as the
decision-maker and a planning-oriented perception model as the control signal
generator. To ensure explainable and reliable driving decisions, the logical
decision-maker is constructed based on a large vision language model. This
model follows the logic employed by experienced human drivers and makes
decisions in a similar manner. On the other hand, the generation of accurate
control signals relies on precise and detailed environmental perception, which
is where 3D scene perception models excel. Therefore, a planning oriented
perception model is employed as the signal generator. It translates the logical
decisions made by the decision-maker into accurate control signals for the
self-driving cars. To effectively train the proposed model, a new dataset for
autonomous driving was created. This dataset encompasses a diverse range of
human driver behaviors and their underlying motivations. By leveraging this
dataset, our model achieves high-precision planning accuracy through a logical
thinking process.
Related papers
- Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - HighwayLLM: Decision-Making and Navigation in Highway Driving with RL-Informed Language Model [5.4854443795779355]
This study presents a novel approach, HighwayLLM, which harnesses the reasoning capabilities of large language models (LLMs) to predict the future waypoints for ego-vehicle's navigation.
Our approach also utilizes a pre-trained Reinforcement Learning (RL) model to serve as a high-level planner, making decisions on appropriate meta-level actions.
arXiv Detail & Related papers (2024-05-22T11:32:37Z) - DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
This paper collects a comprehensive end-to-end driving dataset named DriveCoT.
It contains sensor data, control decisions, and chain-of-thought labels to indicate the reasoning process.
We propose a baseline model called DriveCoT-Agent, trained on our dataset, to generate chain-of-thought predictions and final decisions.
arXiv Detail & Related papers (2024-03-25T17:59:01Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLM is a framework that can perform close-loop autonomous driving in realistic simulators.
We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system.
This model can plug-and-play in existing AD systems such as Apollo for close-loop driving.
arXiv Detail & Related papers (2023-12-14T18:59:05Z) - A Language Agent for Autonomous Driving [31.359413767191608]
We propose a paradigm shift to integrate human-like intelligence into autonomous driving systems.
Our approach, termed Agent-Driver, transforms the traditional autonomous driving pipeline by introducing a versatile tool library.
Powered by Large Language Models (LLMs), our Agent-Driver is endowed with intuitive common sense and robust reasoning capabilities.
arXiv Detail & Related papers (2023-11-17T18:59:56Z) - Traffic Flow Simulation for Autonomous Driving [5.39623346513589]
This paper adopts the vehicle motion model based on cellular automata and the theory of bicycle intelligence to build the simulation environment of autonomous vehicle flow.
The architecture of autonomous vehicles is generally divided into a perception system, decision system and control system.
arXiv Detail & Related papers (2023-07-23T02:51:10Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
This paper focuses on the complex task of merging into moving traffic where uncertainty emanates from the behavior of other drivers.
We frame the problem as a partially observable Markov decision process (POMDP) and solve it online with Monte Carlo tree search.
The solution to the POMDP is a policy that performs high-level driving maneuvers, such as giving way to an approaching car, keeping a safe distance from the vehicle in front or merging into traffic.
arXiv Detail & Related papers (2023-03-29T16:12:45Z) - Prediction Based Decision Making for Autonomous Highway Driving [3.6818636539023175]
This paper proposes a Prediction-based Deep Reinforcement Learning (PDRL) decision-making model.
It considers the manoeuvre intentions of surrounding vehicles in the decision-making process for highway driving.
The results show that the proposed PDRL model improves the decision-making performance compared to a Deep Reinforcement Learning (DRL) model by decreasing collision numbers.
arXiv Detail & Related papers (2022-09-05T19:28:30Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the
First CARLA Autonomous Driving Challenge [49.976633450740145]
This paper presents the architecture design for the navigation of an autonomous vehicle in a simulated urban environment.
Our architecture was made towards meeting the requirements of CARLA Autonomous Driving Challenge.
arXiv Detail & Related papers (2020-10-23T18:07:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.