DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving
- URL: http://arxiv.org/abs/2403.16996v1
- Date: Mon, 25 Mar 2024 17:59:01 GMT
- Title: DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving
- Authors: Tianqi Wang, Enze Xie, Ruihang Chu, Zhenguo Li, Ping Luo,
- Abstract summary: This paper collects a comprehensive end-to-end driving dataset named DriveCoT.
It contains sensor data, control decisions, and chain-of-thought labels to indicate the reasoning process.
We propose a baseline model called DriveCoT-Agent, trained on our dataset, to generate chain-of-thought predictions and final decisions.
- Score: 81.04174379726251
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: End-to-end driving has made significant progress in recent years, demonstrating benefits such as system simplicity and competitive driving performance under both open-loop and closed-loop settings. Nevertheless, the lack of interpretability and controllability in its driving decisions hinders real-world deployment for end-to-end driving systems. In this paper, we collect a comprehensive end-to-end driving dataset named DriveCoT, leveraging the CARLA simulator. It contains sensor data, control decisions, and chain-of-thought labels to indicate the reasoning process. We utilize the challenging driving scenarios from the CARLA leaderboard 2.0, which involve high-speed driving and lane-changing, and propose a rule-based expert policy to control the vehicle and generate ground truth labels for its reasoning process across different driving aspects and the final decisions. This dataset can serve as an open-loop end-to-end driving benchmark, enabling the evaluation of accuracy in various chain-of-thought aspects and the final decision. In addition, we propose a baseline model called DriveCoT-Agent, trained on our dataset, to generate chain-of-thought predictions and final decisions. The trained model exhibits strong performance in both open-loop and closed-loop evaluations, demonstrating the effectiveness of our proposed dataset.
Related papers
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Autonomous Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes dataset demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Drive is a benchmark dataset with over 600K video-text pairs.
We characterize the autonomous driving process as a sequential combination of perception, prediction, and reasoning steps.
We introduce a novel aggregated evaluation metric to assess chain-based reasoning performance in autonomous systems.
arXiv Detail & Related papers (2023-12-06T18:32:33Z) - Recent Advancements in End-to-End Autonomous Driving using Deep
Learning: A Survey [9.385936248154987]
End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with modular systems.
Recent developments in End-to-End autonomous driving are analyzed, and research is categorized based on underlying principles.
This paper assesses the state-of-the-art, identifies challenges, and explores future possibilities.
arXiv Detail & Related papers (2023-07-10T07:00:06Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
We provide a comprehensive analysis of more than 270 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving.
We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others.
We discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework.
arXiv Detail & Related papers (2023-06-29T14:17:24Z) - Non-zero-sum Game Control for Multi-vehicle Driving via Reinforcement
Learning [0.0]
This paper constructs the multi-vehicle driving scenario as a non-zero-sum game.
Decisions are made by Nash equilibrium driving strategy.
Our algorithm could drive perfectly by directly controlling acceleration and steering angle.
arXiv Detail & Related papers (2023-02-08T09:27:20Z) - Integrated Decision and Control for High-Level Automated Vehicles by
Mixed Policy Gradient and Its Experiment Verification [10.393343763237452]
This paper presents a self-evolving decision-making system based on the Integrated Decision and Control (IDC)
An RL algorithm called constrained mixed policy gradient (CMPG) is proposed to consistently upgrade the driving policy of the IDC.
Experiment results show that boosting by data, the system can achieve better driving ability over model-based methods.
arXiv Detail & Related papers (2022-10-19T14:58:41Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.