Cybersecurity in Critical Infrastructures: A Post-Quantum Cryptography Perspective
- URL: http://arxiv.org/abs/2401.03780v2
- Date: Tue, 11 Jun 2024 10:29:10 GMT
- Title: Cybersecurity in Critical Infrastructures: A Post-Quantum Cryptography Perspective
- Authors: Javier Oliva del Moral, Antonio deMarti iOlius, Gerard Vidal, Pedro M. Crespo, Josu Etxezarreta Martinez,
- Abstract summary: Implementing cryptosystems in industrial communication networks faces a trade-off between the security of the communications and the amortization of the industrial infrastructure.
New threat to cybersecurity has arisen with the theoretical proposal of quantum computers.
Many global agents have become aware that transitioning their secure communications to a quantum secure paradigm is a priority that should be established before the arrival of fault-tolerance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The machinery of industrial environments was connected to the Internet years ago with the scope of increasing their performance. However, this change made such environments vulnerable against cyber-attacks that can compromise their correct functioning resulting in economic or social problems. Moreover, implementing cryptosystems in the communications between operational technology (OT) devices is a more challenging task than for information technology (IT) environments since the OT networks are generally composed of legacy elements, characterized by low-computational capabilities. Consequently, implementing cryptosystems in industrial communication networks faces a trade-off between the security of the communications and the amortization of the industrial infrastructure. Critical Infrastructure (CI) refers to the industries which provide key resources for the daily social and economical development, e.g. electricity. Furthermore, a new threat to cybersecurity has arisen with the theoretical proposal of quantum computers, due to their potential ability of breaking state-of-the-art cryptography protocols, such as RSA or ECC. Many global agents have become aware that transitioning their secure communications to a quantum secure paradigm is a priority that should be established before the arrival of fault-tolerance. In this paper, we aim to describe the problematic of implementing post-quantum cryptography (PQC) to CI environments. For doing so, we describe the requirements for these scenarios and how they differ against IT. We also introduce classical cryptography and how quantum computers pose a threat to such security protocols. Furthermore, we introduce state-of-the-art proposals of PQC protocols and present their characteristics. We conclude by discussing the problematic of integrating PQC in industrial environments.
Related papers
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Strategic Roadmap for Quantum- Resistant Security: A Framework for Preparing Industries for the Quantum Threat [0.0]
This paper outlines a strategic roadmap for industries to anticipate and mitigate the risks posed by quantum attacks.
By presenting a structured timeline and actionable recommendations, this roadmap with proposed framework prepares industries with the essential strategy to safeguard their potential security threats in the quantum computing era.
arXiv Detail & Related papers (2024-11-15T06:59:41Z) - Post-Quantum Secure UE-to-UE Communications [1.0230631028817565]
This demo paper proposes the integration of Post-Quantum Cryptography (PQC) in TLS for UE Communication to mitigate the risks of quantum attacks.
By addressing the implementation of PQC within a 5G network to secure UE-to-UE communication, this research aims to pave the way for developing quantum-resistant mobile devices.
arXiv Detail & Related papers (2024-08-20T18:19:39Z) - Security in IS and social engineering -- an overview and state of the art [0.6345523830122166]
The digitization of all processes and the opening to IoT devices has fostered the emergence of a new formof crime, i.e. cybercrime.
The maliciousness of such attacks lies in the fact that they turn users into facilitators of cyber-attacks, to the point of being perceived as the weak link'' of cybersecurity.
Knowing how to anticipate, identifying weak signals and outliers, detect early and react quickly to computer crime are therefore priority issues requiring a prevention and cooperation approach.
arXiv Detail & Related papers (2024-06-17T13:25:27Z) - Cybersecurity in the Quantum Era: Assessing the Impact of Quantum Computing on Infrastructure [0.04096453902709291]
This analysis explores the impact of quantum computing on critical infrastructure and cloud services.
We advocate for proactive security strategies and collaboration between sectors to develop and implement quantum-resistant cryptography.
This blueprint strengthens each area's defenses against potential quantum-induced cyber threats.
arXiv Detail & Related papers (2024-04-16T15:36:23Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Quantum Key Distribution for Critical Infrastructures: Towards Cyber
Physical Security for Hydropower and Dams [0.4166512373146748]
Hydropower facilities are often remotely monitored or controlled from a centralized remote-control room.
Communications may use the internet to remote control a facility's control systems, or it may involve sending control commands over a network from a control room to a machine.
The content could be encrypted and decrypted using a public key to protect the communicated information.
In contrast, quantum key distribution (QKD) is not based upon a computational problem, and offers an alternative to conventional public-key cryptography.
arXiv Detail & Related papers (2023-10-19T18:59:23Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.