Cyber security of OT networks: A tutorial and overview
- URL: http://arxiv.org/abs/2502.14017v1
- Date: Wed, 19 Feb 2025 17:23:42 GMT
- Title: Cyber security of OT networks: A tutorial and overview
- Authors: Sumit Kumar, Harsh Vardhan,
- Abstract summary: This manuscript explores the cybersecurity challenges of Operational Technology (OT) networks.
OT systems increasingly integrate with Information Technology (IT) systems due to Industry 4.0 initiatives.
The study examines key components of OT systems, such as SCADA (Supervisory Control and Data Acquisition), PLCs (Programmable Logic Controllers), and RTUs (Remote Terminal Units)
- Score: 1.4361933642658902
- License:
- Abstract: This manuscript explores the cybersecurity challenges of Operational Technology (OT) networks, focusing on their critical role in industrial environments such as manufacturing, energy, and utilities. As OT systems increasingly integrate with Information Technology (IT) systems due to Industry 4.0 initiatives, they become more vulnerable to cyberattacks, which pose risks not only to data but also to physical infrastructure. The study examines key components of OT systems, such as SCADA (Supervisory Control and Data Acquisition), PLCs (Programmable Logic Controllers), and RTUs (Remote Terminal Units), and analyzes recent cyberattacks targeting OT environments. Furthermore, it highlights the security concerns arising from the convergence of IT and OT systems, examining attack vectors and the growing threats posed by malware, ransomware, and nation-state actors. Finally, the paper discusses modern approaches and tools used to secure these environments, providing insights into improving the cybersecurity posture of OT networks.
Related papers
- Integrating Cybersecurity Frameworks into IT Security: A Comprehensive Analysis of Threat Mitigation Strategies and Adaptive Technologies [0.0]
The cybersecurity threat landscape is constantly actively making it imperative to develop sound frameworks to protect the IT structures.
This paper aims to discuss the application of cybersecurity frameworks into the IT security with focus placed on the role of such frameworks in addressing the changing nature of cybersecurity threats.
The discussion also singles out such technologies as Artificial Intelligence (AI) and Machine Learning (ML) as the core for real-time threat detection and response mechanisms.
arXiv Detail & Related papers (2025-02-02T03:38:48Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Security in IS and social engineering -- an overview and state of the art [0.6345523830122166]
The digitization of all processes and the opening to IoT devices has fostered the emergence of a new formof crime, i.e. cybercrime.
The maliciousness of such attacks lies in the fact that they turn users into facilitators of cyber-attacks, to the point of being perceived as the weak link'' of cybersecurity.
Knowing how to anticipate, identifying weak signals and outliers, detect early and react quickly to computer crime are therefore priority issues requiring a prevention and cooperation approach.
arXiv Detail & Related papers (2024-06-17T13:25:27Z) - Cybersecurity in Critical Infrastructures: A Post-Quantum Cryptography Perspective [0.0]
Implementing cryptosystems in industrial communication networks faces a trade-off between the security of the communications and the amortization of the industrial infrastructure.
New threat to cybersecurity has arisen with the theoretical proposal of quantum computers.
Many global agents have become aware that transitioning their secure communications to a quantum secure paradigm is a priority that should be established before the arrival of fault-tolerance.
arXiv Detail & Related papers (2024-01-08T10:02:48Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - Trust-based Approaches Towards Enhancing IoT Security: A Systematic Literature Review [3.0969632359049473]
This research paper presents a systematic literature review on the Trust-based cybersecurity security approaches for IoT.
We highlighted the common trust-based mitigation techniques in existence for dealing with these threats.
Several open issues were highlighted, and future research directions presented.
arXiv Detail & Related papers (2023-11-20T12:21:35Z) - Securing the Digital World: Protecting smart infrastructures and digital
industries with Artificial Intelligence (AI)-enabled malware and intrusion
detection [0.0]
cybercrime has emerged as a global threat to governments, businesses, and civil societies.
This paper investigates AI-based cyber threat detection to protect our modern digital ecosystems.
arXiv Detail & Related papers (2023-10-15T09:35:56Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.