論文の概要: Limitations of Data-Driven Spectral Reconstruction -- An Optics-Aware Analysis
- arxiv url: http://arxiv.org/abs/2401.03835v4
- Date: Sun, 19 Oct 2025 07:54:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:38.018364
- Title: Limitations of Data-Driven Spectral Reconstruction -- An Optics-Aware Analysis
- Title(参考訳): データ駆動スペクトル再構成の限界 -光学的解析-
- Authors: Qiang Fu, Matheus Souza, Eunsue Choi, Suhyun Shin, Seung-Hwan Baek, Wolfgang Heidrich,
- Abstract要約: データ駆動スペクトル再構成は、費用対効果の高いRGBカメラで捉えたRGB画像からスペクトル情報を抽出することを目的としている。
我々は、現在のデータセットに対する過度に適合する制限を評価する。
我々は,RGBのスペクトル法におけるメタメカや準メタメカの条件を扱うための基本的な限界を明らかにした。
- 参考スコア(独自算出の注目度): 27.72795283513315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral imaging empowers machine vision systems with the distinct capability of identifying materials through recording their spectral signatures. Recent efforts in data-driven spectral reconstruction aim at extracting spectral information from RGB images captured by cost-effective RGB cameras, instead of dedicated hardware. Published work reports exceedingly high numerical scores for this reconstruction task, yet real-world performance lags substantially behind. We systematically analyze the performance of such methods. First, we evaluate the overfitting limitations with respect to current datasets by training the networks with less data, validating the trained models with unseen yet slightly modified data and cross-dataset validation. Second, we reveal fundamental limitations in the ability of RGB to spectral methods to deal with metameric or near-metameric conditions, which have so far gone largely unnoticed due to the insufficiencies of existing datasets. We validate the trained models with metamer data generated by metameric black theory and re-training the networks with various forms of metamers. This methodology can also be used for data augmentation as a partial mitigation of the dataset issues, although the RGB to spectral inverse problem remains fundamentally ill-posed. Finally, we analyze the potential for modifying the problem setting to achieve better performance by exploiting optical encoding provided by either optical aberrations or deliberate optical design. Our experiments show such approaches provide improved results under certain circumstances, but their overall performance is limited by the same dataset issues. We conclude that future progress on snapshot spectral imaging will heavily depend on the generation of improved datasets which can then be used to design effective optical encoding strategies. Code: https://github.com/vccimaging/OpticsAwareHSI-Analysis.
- Abstract(参考訳): ハイパースペクトルイメージングは、スペクトルシグネチャを記録することで、材料を識別する能力を持つマシンビジョンシステムに権限を与える。
データ駆動型スペクトル再構成における最近の取り組みは、専用ハードウェアではなく、費用対効果の高いRGBカメラで捉えたRGB画像からスペクトル情報を抽出することを目的としている。
公表された作業報告は、この再建作業において非常に高い数値スコアを達成しているが、実際のパフォーマンスの遅れはかなり遅れている。
このような手法の性能を系統的に解析する。
まず、より少ないデータでネットワークをトレーニングし、わずかに修正されていないデータでトレーニングされたモデルを検証し、データセット間の検証を行うことにより、現在のデータセットに対する過度な制限を評価する。
第2に、RGBのスペクトル法におけるメタメカや準メタメカの条件に対処する能力の根本的な制限を明らかにする。
メタマーブラック理論によって生成されたメタマーデータを用いてトレーニングされたモデルを検証し,各種メタマーを用いてネットワークを再学習する。
この手法は、RGBからスペクトル逆問題への部分的な緩和として、データ拡張にも使用することができるが、基本的には不十分である。
最後に、光学収差や故意の光学設計によって提供される光符号化を利用して、より優れた性能を達成するために、問題設定を変更する可能性を分析する。
実験の結果, ある状況下では改善された結果が得られたが, 全体の性能は同一のデータセットの問題によって制限されている。
我々は、将来のスナップショット分光画像の進歩は、効率的な光符号化戦略の設計に使用できる改良されたデータセットの生成に大きく依存する、と結論付けている。
コード:https://github.com/vccimaging/OpticsAwareHSI-Analysis。
関連論文リスト
- MTSIC: Multi-stage Transformer-based GAN for Spectral Infrared Image Colorization [26.33768545616346]
既存のカラー化手法は、スペクトル情報に制限があり、特徴抽出能力が不十分なシングルバンド画像に依存している。
本稿では、スペクトル情報を統合し、赤外線画像のカラー化を強化するために、GAN(Generative Adversarial Network)ベースのフレームワークを提案する。
実験の結果,提案手法は従来の手法よりも優れ,赤外線画像の視覚的品質を効果的に向上させることがわかった。
論文 参考訳(メタデータ) (2025-06-21T01:42:25Z) - Spectral-Aware Global Fusion for RGB-Thermal Semantic Segmentation [10.761216101789774]
マルチモーダル機能の強化と融合を図るため,SGFNet(Spectral-aware Global Fusion Network)を提案する。
SGFNetは、MFNetとPST900データセットの最先端メソッドよりも優れている。
論文 参考訳(メタデータ) (2025-05-21T13:17:57Z) - CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
スペクトルイメージングは、医療や都市景観の理解など、様々な領域で有望な応用を提供する。
スペクトルカメラのチャネル次元と捕獲波長のばらつきは、AI駆動方式の開発を妨げる。
我々は、$textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$のモデルである$textbfCARL$を紹介した。
論文 参考訳(メタデータ) (2025-04-27T13:06:40Z) - Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution [54.293362972473595]
画像超解像(SR)は、高解像度(HR)画像を低解像度(LR)画像から再構成することを目的としている。
SRタスクに対処する現在のアプローチは、RGB画像の特徴を抽出するか、同様の劣化パターンを仮定するものである。
スペクトル分布の忠実さを保ちつつ、赤外線変調特性を復元するコントゥーレット改質ゲートフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-19T14:24:03Z) - Joint RGB-Spectral Decomposition Model Guided Image Enhancement in Mobile Photography [36.4031416416813]
拡張を導いたRGBスペクトル分解モデルを提案する。
我々は,RGBと低分解能マルチスペクトル画像(Lr-MSI)のセナリティを活用し,シェーディング,反射率,物質意味の先行を予測した。
これらの事前情報は、ダイナミックレンジ拡張、カラーマッピング、グリッドエキスパート学習を促進するために、確立されたHDRNetにシームレスに統合される。
論文 参考訳(メタデータ) (2024-07-25T12:43:41Z) - Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE) [0.0]
ハイパースペクトル画像分割のための多種多様なディープラーニングアーキテクチャの性能を評価する。
その結果,空間情報をスペクトルデータと組み合わせることで,セグメンテーション結果が改善された。
我々は、Tecnalia WEEE Hyperspectralデータセットのクリーニングと公開によって、この分野に貢献する。
論文 参考訳(メタデータ) (2024-07-05T13:45:11Z) - NIR-Assisted Image Denoising: A Selective Fusion Approach and A Real-World Benchmark Dataset [53.79524776100983]
近赤外(NIR)画像を活用して、視認可能なRGB画像の復調を支援することで、この問題に対処する可能性を示している。
既存の作品では、NIR情報を効果的に活用して現実のイメージを飾ることに苦戦している。
先進デノナイジングネットワークにプラグイン・アンド・プレイ可能な効率的な選択核融合モジュール(SFM)を提案する。
論文 参考訳(メタデータ) (2024-04-12T14:54:26Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
低照度画像強調(LLIE)は、低照度画像を改善することを目的としている。
既存の手法では、様々な明るさ劣化からの回復の不確実性と、テクスチャと色情報の喪失という2つの課題に直面している。
我々は、量子化された先行値と画像の精細化を利用して、新しいエンハンスメント手法、CodeEnhanceを提案する。
論文 参考訳(メタデータ) (2024-04-08T07:34:39Z) - MatSpectNet: Material Segmentation Network with Domain-Aware and
Physically-Constrained Hyperspectral Reconstruction [13.451692195639696]
MatSpectNetは、RGB画像から回復したハイパースペクトル画像で材料を分割する新しいモデルである。
現代のカメラにおける色知覚の原理を利用して、再構成されたハイパースペクトル画像を制限する。
平均ピクセル精度は1.60%増加し、最新の出版物と比べて平均クラス精度は3.42%改善している。
論文 参考訳(メタデータ) (2023-07-21T10:02:02Z) - Learning to Recover Spectral Reflectance from RGB Images [20.260831758913902]
RGB画像からのスペクトル反射率回復(SRR)は困難で費用がかかる。
既存のほとんどのアプローチは、合成画像に基づいて訓練され、見知らぬすべてのテスト画像に同じパラメータを使用する。
本稿では,訓練済みのネットワークパラメータを各テスト画像に微調整し,外部情報と内部情報を組み合わせた自己教師付きメタ補助学習(MAXL)戦略を提案する。
論文 参考訳(メタデータ) (2023-04-04T23:27:02Z) - Reversed Image Signal Processing and RAW Reconstruction. AIM 2022
Challenge Report [109.2135194765743]
本稿では,AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstructionを紹介する。
我々は,メタデータを使わずにRGBから生のセンサイメージを回収し,ISP変換を「逆」することを目的としている。
論文 参考訳(メタデータ) (2022-10-20T10:43:53Z) - Lightweight HDR Camera ISP for Robust Perception in Dynamic Illumination
Conditions via Fourier Adversarial Networks [35.532434169432776]
照明とノイズ除去の逐次的バランスをとる軽量な2段階画像強調アルゴリズムを提案する。
また、異なる照明条件下での一貫した画像強調のためのフーリエスペクトルベース対向フレームワーク(AFNet)を提案する。
また,定量的および定性的な評価に基づいて,画像強調技術が共通認識タスクの性能に与える影響について検討した。
論文 参考訳(メタデータ) (2022-04-04T18:48:51Z) - Semantic-embedded Unsupervised Spectral Reconstruction from Single RGB
Images in the Wild [48.44194221801609]
この課題に対処するため、我々は、新しい軽量でエンドツーエンドの学習ベースのフレームワークを提案する。
我々は、効率的なカメラスペクトル応答関数推定により、検索されたHS画像から入力されたRGB画像と再投影されたRGB画像の差を徐々に広げる。
提案手法は最先端の教師なし手法よりも優れており,いくつかの設定下では最新の教師付き手法よりも優れている。
論文 参考訳(メタデータ) (2021-08-15T05:19:44Z) - Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from
RGB [84.1657998542458]
再現精度は、使用中のRGBカメラのスペクトル応答に大きく依存していることが証明されている。
本稿では,既存のrgbカメラのフィルタアレイに基づくカラーイメージング機構を調査し,irカットフィルタの設計方法を提案する。
論文 参考訳(メタデータ) (2021-03-26T19:42:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。