Empirical Analysis of Efficient Fine-Tuning Methods for Large
Pre-Trained Language Models
- URL: http://arxiv.org/abs/2401.04051v1
- Date: Mon, 8 Jan 2024 17:44:43 GMT
- Title: Empirical Analysis of Efficient Fine-Tuning Methods for Large
Pre-Trained Language Models
- Authors: Nigel Doering, Cyril Gorlla, Trevor Tuttle, Adhvaith Vijay
- Abstract summary: BitFit and adapter modules are compared to standard full model fine-tuning.
The BitFit approach matches full fine-tuning performance across varying amounts of training data.
adapter modules exhibit high variability, with inconsistent gains over default models.
- Score: 4.096453902709292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning large pre-trained language models for downstream tasks remains a
critical challenge in natural language processing. This paper presents an
empirical analysis comparing two efficient fine-tuning methods - BitFit and
adapter modules - to standard full model fine-tuning. Experiments conducted on
GLUE benchmark datasets (MRPC, COLA, STS-B) reveal several key insights. The
BitFit approach, which trains only bias terms and task heads, matches full
fine-tuning performance across varying amounts of training data and time
constraints. It demonstrates remarkable stability even with only 30\% of data,
outperforming full fine-tuning at intermediate data levels. Adapter modules
exhibit high variability, with inconsistent gains over default models. The
findings indicate BitFit offers an attractive balance between performance and
parameter efficiency. Our work provides valuable perspectives on model tuning,
emphasizing robustness and highlighting BitFit as a promising alternative for
resource-constrained or streaming task settings. The analysis offers actionable
guidelines for efficient adaptation of large pre-trained models, while
illustrating open challenges in stabilizing techniques like adapter modules.
Related papers
- Visual Fourier Prompt Tuning [63.66866445034855]
We propose the Visual Fourier Prompt Tuning (VFPT) method as a general and effective solution for adapting large-scale transformer-based models.
Our approach incorporates the Fast Fourier Transform into prompt embeddings and harmoniously considers both spatial and frequency domain information.
Our results demonstrate that our approach outperforms current state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2024-11-02T18:18:35Z) - Comparative Analysis of Different Efficient Fine Tuning Methods of Large Language Models (LLMs) in Low-Resource Setting [0.0]
We try to push the understanding of different fine-tuning strategies for large language models (LLMs)
We compare state-of-the-art methods like vanilla fine-tuning and Pattern-Based Fine-Tuning (PBFT) on pre-trained models across two datasets, COLA and MNLI.
Our findings suggest that these alternative strategies can exhibit out-of-domain generalization comparable to that of vanilla FT and PBFT.
arXiv Detail & Related papers (2024-05-21T20:08:52Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
Large language models (LLMs) have achieved significant success, but their vulnerability to adversarial perturbations has raised considerable concerns.
We propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions.
Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility.
arXiv Detail & Related papers (2024-04-18T15:47:00Z) - One Fits All: Universal Time Series Analysis by Pretrained LM and
Specially Designed Adaptors [23.292260325891032]
We introduce four unique adapters, designed specifically for downstream tasks based on the pre-trained model.
These adapters are further enhanced with efficient parameter tuning, resulting in superior performance compared to all state-of-the-art methods.
arXiv Detail & Related papers (2023-11-24T16:32:47Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
We study self-training as one of the predominant semi-supervised learning approaches.
We present UPET, a novel Uncertainty-aware self-Training framework.
We show that UPET achieves a substantial improvement in terms of performance and efficiency.
arXiv Detail & Related papers (2023-10-19T02:18:29Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
Correlation based stereo matching has achieved outstanding performance.
Current methods with a fixed model do not work uniformly well across various datasets.
This paper proposes a new perspective to dynamically calculate correlation for robust stereo matching.
arXiv Detail & Related papers (2023-07-26T09:47:37Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
We propose Adapted Multimodal BERT, a BERT-based architecture for multimodal tasks.
adapter adjusts the pretrained language model for the task at hand, while the fusion layers perform task-specific, layer-wise fusion of audio-visual information with textual BERT representations.
In our ablations we see that this approach leads to efficient models, that can outperform their fine-tuned counterparts and are robust to input noise.
arXiv Detail & Related papers (2022-12-01T17:31:42Z) - Prototypical Fine-tuning: Towards Robust Performance Under Varying Data
Sizes [47.880781811936345]
We propose a novel framework for fine-tuning pretrained language models (LM)
Our prototypical fine-tuning approach can automatically adjust the model capacity according to the number of data points and the model's inherent attributes.
arXiv Detail & Related papers (2022-11-24T14:38:08Z) - Visual Prompt Tuning [74.5309408185523]
This paper introduces Visual Prompt Tuning (VPT) as an efficient and effective alternative to full fine-tuning for large-scale Transformer models in vision.
VPT introduces only a small amount (less than 1% of model parameters) of trainable parameters in the input space while keeping the model backbone frozen.
arXiv Detail & Related papers (2022-03-23T01:17:16Z) - DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language
Models [152.29364079385635]
As pre-trained models grow bigger, the fine-tuning process can be time-consuming and computationally expensive.
We propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights.
Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning and (ii) resource-efficient inference.
arXiv Detail & Related papers (2021-10-30T03:29:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.