論文の概要: RudolfV: A Foundation Model by Pathologists for Pathologists
- arxiv url: http://arxiv.org/abs/2401.04079v4
- Date: Tue, 11 Jun 2024 17:46:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 00:39:03.529882
- Title: RudolfV: A Foundation Model by Pathologists for Pathologists
- Title(参考訳): RudolfV:病理学者のための基礎モデル
- Authors: Jonas Dippel, Barbara Feulner, Tobias Winterhoff, Timo Milbich, Stephan Tietz, Simon Schallenberg, Gabriel Dernbach, Andreas Kunft, Simon Heinke, Marie-Lisa Eich, Julika Ribbat-Idel, Rosemarie Krupar, Philipp Anders, Niklas Prenißl, Philipp Jurmeister, David Horst, Lukas Ruff, Klaus-Robert Müller, Frederick Klauschen, Maximilian Alber,
- Abstract要約: 計算病理学の基礎モデルを設計するための新しいアプローチを提案する。
我々のモデル "RudolfV" は、様々なベンチマークで既存の最先端基盤モデルを上回っています。
- 参考スコア(独自算出の注目度): 13.17203220753175
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial intelligence has started to transform histopathology impacting clinical diagnostics and biomedical research. However, while many computational pathology approaches have been proposed, most current AI models are limited with respect to generalization, application variety, and handling rare diseases. Recent efforts introduced self-supervised foundation models to address these challenges, yet existing approaches do not leverage pathologist knowledge by design. In this study, we present a novel approach to designing foundation models for computational pathology, incorporating pathologist expertise, semi-automated data curation, and a diverse dataset from over 15 laboratories, including 58 tissue types, and encompassing 129 different histochemical and immunohistochemical staining modalities. We demonstrate that our model "RudolfV" surpasses existing state-of-the-art foundation models across different benchmarks focused on tumor microenvironment profiling, biomarker evaluation, and reference case search while exhibiting favorable robustness properties. Our study shows how domain-specific knowledge can increase the efficiency and performance of pathology foundation models and enable novel application areas.
- Abstract(参考訳): 人工知能は、臨床診断や生物医学の研究に影響を与える病理学を変革し始めている。
しかし、多くの計算病理学的アプローチが提案されているが、現在のAIモデルは、一般化、応用の多様性、希少疾患の扱いに関して制限されている。
近年の取り組みはこれらの課題に対処するために自己監督的基礎モデルを導入しているが、既存のアプローチでは設計による病理学的な知識を活用できない。
本研究では, 組織タイプ58種を含む15以上の実験室から, 病理学の専門知識, 半自動データキュレーション, および多種多様なデータセットを取り入れ, 組織化学的, 免疫組織化学的染色モードを129種類含む, 計算病理学の基礎モデルを設計するための新しいアプローチを提案する。
我々は,腫瘍のマイクロ環境プロファイリング,バイオマーカー評価,参照事例探索に重点を置くベンチマークにおいて,我々のモデル「RudolfV」が既存の最先端基盤モデルを上回っ,良好なロバスト性を示した。
本研究は、ドメイン固有の知識が、病理基盤モデルの効率性と性能を向上し、新しい応用領域を実現する方法を示す。
関連論文リスト
- A Clinical Benchmark of Public Self-Supervised Pathology Foundation Models [2.124312824026935]
本研究は, がん診断を含む臨床関連エンドポイントと, 2つの医療センターからの標準病院手術中に発生する各種バイオマーカーとを関連づけた臨床スライドを含む病理データセットの収集について述べる。
これらのデータセットを利用して、公共病理基盤モデルの性能を体系的に評価し、新しい基礎モデルをトレーニングし、適切な事前学習モデルを選択するためのベストプラクティスに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-07-09T02:33:13Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Knowledge-enhanced Visual-Language Pretraining for Computational Pathology [68.6831438330526]
本稿では,公共資源から収集した大規模画像テキストペアを利用した視覚的表現学習の課題について考察する。
ヒト32組織から病理診断を必要とする4,718の疾患に対して50,470個の情報属性からなる病理知識ツリーをキュレートする。
すべてのコード、モデル、そして病理知識ツリーは、研究コミュニティにリリースされます。
論文 参考訳(メタデータ) (2024-04-15T17:11:25Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - OpenMEDLab: An Open-source Platform for Multi-modality Foundation Models
in Medicine [55.29668193415034]
マルチモダリティ基盤モデルのためのオープンソースプラットフォームであるOpenMEDLabについて紹介する。
これは、最前線臨床および生体情報学応用のための大規模言語とビジョンモデルを刺激し、微調整する先駆的な試みの解決策をカプセル化する。
様々な医用画像のモダリティ、臨床テキスト、タンパク質工学など、事前訓練された基礎モデル群へのアクセスが可能である。
論文 参考訳(メタデータ) (2024-02-28T03:51:02Z) - Domain-specific optimization and diverse evaluation of self-supervised
models for histopathology [9.450129206898115]
組織学におけるタスク固有の深層学習モデルは、診断、臨床研究、精密医療を改善するための有望な機会を提供する。
自己教師型学習(SSL)による病理組織学の基礎モデルの開発と評価について述べる。
論文 参考訳(メタデータ) (2023-10-20T03:38:07Z) - PathAsst: A Generative Foundation AI Assistant Towards Artificial
General Intelligence of Pathology [15.419350834457136]
病理学における診断・予測分析に革命をもたらすための多モード生成基盤AIアシスタントであるPathAsstを提案する。
PathAsstの開発には、データ取得、CLIPモデル適応、PathAsstのマルチモーダル生成機能のトレーニングの3つの重要なステップが含まれている。
PathAsstの実験結果は、病理診断と治療プロセスを改善するためにAIを利用した生成基盤モデルを活用する可能性を示している。
論文 参考訳(メタデータ) (2023-05-24T11:55:50Z) - PathologyBERT -- Pre-trained Vs. A New Transformer Language Model for
Pathology Domain [2.3628956573813498]
大規模な病理データベースのテキストマイニングが成功すれば、「ビッグデータ」がん研究の進展に重要な役割を果たす可能性がある。
病理学の分野での急速なデータマイニング開発を支援するために、病理学固有の言語空間は存在しない。
PathologyBERTは,347,173例の病理組織学的報告に基づいて訓練された,訓練済みの仮面言語モデルである。
論文 参考訳(メタデータ) (2022-05-13T20:42:07Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Deep neural network models for computational histopathology: A survey [1.2891210250935146]
深層学習は がん組織像の分析と解釈において 主流の方法論選択となりました
本稿では,現在使われている最先端の深層学習手法について概説する。
私たちは、現在のディープラーニングアプローチにおける重要な課題と制限と、将来の研究への道のりを強調します。
論文 参考訳(メタデータ) (2019-12-28T01:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。