Escaping fronts in local quenches of a confining spin chain
- URL: http://arxiv.org/abs/2401.04193v3
- Date: Tue, 16 Apr 2024 12:01:26 GMT
- Title: Escaping fronts in local quenches of a confining spin chain
- Authors: A. Krasznai, G. Takács,
- Abstract summary: Local quenches from initial states generated by a single spin-flip in either the true or the false vacuum state of the confining quantum Ising spin chain in ferromagnetic regime.
For confining quenches built upon the true vacuum, the propagating signal consists of superpositions of left and right-moving mesons escaping confinement.
For anti-confining quenches built upon the false vacuum it is composed of superpositions of left and right-moving bubbles which escape Wannier-Stark localisation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider local quenches from initial states generated by a single spin-flip in either the true or the false vacuum state of the confining quantum Ising spin chain in the ferromagnetic regime. Contrary to global quenches, where the light-cone behaviour is strongly suppressed, we find a significant light-cone signal propagating with a nonzero velocity besides the expected localised oscillating component. Combining an analytic representation of the initial state with a numerical description of the relevant excitations using the two-fermion approximation, we can construct the spectrum of post-quench excitations and their overlaps with the initial state, identifying the underlying mechanism. For confining quenches built upon the true vacuum, the propagating signal consists of superpositions of left and right-moving mesons escaping confinement. In contrast, for anti-confining quenches built upon the false vacuum it is composed of superpositions of left and right-moving bubbles which escape Wannier-Stark localisation.
Related papers
- Confinement and false vacuum decay on the Potts quantum spin chain [0.0]
We consider non-equilibrium dynamics after quantum quenches in the mixed-field three-state Potts quantum chain.
Compared to the analogous setting for the Ising spin chain, the Potts model has a much richer phenomenology.
arXiv Detail & Related papers (2024-10-04T12:49:49Z) - Quantum jumps in amplitude bistability: tracking a coherent and invertible state localization [0.0]
We investigate quantum jumps occurring between macroscopic metastable states of light in the open driven Jaynes-Cummings model.
We find that, in the limit of zero spontaneous emission considered in [H. J. Carmichael, Phys. Rev. X 5, 031028], the jumps from a high-photon state to the vacuum state entail two stages.
arXiv Detail & Related papers (2024-09-17T15:08:48Z) - Frequency-resolved Purcell effect for the dissipative generation of
steady-state entanglement [49.1574468325115]
We report a driven-dissipative mechanism to generate stationary entangled $W$ states among strongly-interacting quantum emitters placed within a cavity.
The non-harmonic energy structure of the interacting ensemble allows this transition to be resonantly selected by the cavity.
Evidence of this purely dissipative mechanism should be observable in state-of-the-art cavity QED systems in the solid-state.
arXiv Detail & Related papers (2023-12-19T18:04:22Z) - Coherent spin-phonon scattering in facilitated Rydberg lattices [0.0]
We study the dynamics of a spin system using Rydberg atoms in optical tweezer traps.
Rydberg excitations expand ballistically through the lattice.
Spin domain dynamics is sensitive to the coherence properties of the atoms' vibrational state.
arXiv Detail & Related papers (2023-10-31T18:09:47Z) - Controlled excitation of rotons in superfluid helium with an optical
centrifuge [77.34726150561087]
We show that the orientation of the angular momentum transferred from the laser field to the rotons, is dictated by the centrifuge.
The observed decay of the coherent Raman signal suggests that the decoherence is governed by the scattering on thermal rotons and phonons.
arXiv Detail & Related papers (2023-06-02T23:30:03Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Experimental Demonstration of Topological Charge Protection in Wigner
Current [3.093409936654924]
We reconstruct Wigner's current of quantum phase space dynamics for the first time.
We reveal the push-and-pull" associated with damping and diffusion due to the coupling of a squeezed vacuum state to its environment.
arXiv Detail & Related papers (2021-11-16T08:22:22Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Study of the spin kitten states in a strongly coupled spin-oscillator
system [0.0]
A bipartite qudit-oscillator Hamiltonian is explicitly studied for low spin values in both strong and ultrastrong coupling regimes.
In the strong coupling regime the qudit entropy displays a pattern of quasiperiodic collapses and revivals.
The emergence of the spin squeezed states during the bipartite evolution is observed.
arXiv Detail & Related papers (2020-04-02T17:38:06Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.