Coherent spin-phonon scattering in facilitated Rydberg lattices
- URL: http://arxiv.org/abs/2311.00064v1
- Date: Tue, 31 Oct 2023 18:09:47 GMT
- Title: Coherent spin-phonon scattering in facilitated Rydberg lattices
- Authors: Matteo Magoni, Chris Nill, Igor Lesanovsky
- Abstract summary: We study the dynamics of a spin system using Rydberg atoms in optical tweezer traps.
Rydberg excitations expand ballistically through the lattice.
Spin domain dynamics is sensitive to the coherence properties of the atoms' vibrational state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the dynamics of a spin system with facilitation constraint
that can be studied using Rydberg atoms in arrays of optical tweezer traps. The
elementary degrees of freedom of the system are domains of Rydberg excitations
that expand ballistically through the lattice. Due to mechanical forces,
Rydberg excited atoms are coupled to vibrations within their traps. At zero
temperature and large trap depth, it is known that virtually excited lattice
vibrations only renormalize the timescale of the ballistic propagation.
However, when vibrational excitations are initially present -- i.e., when the
external motion of the atoms is prepared in an excited Fock state, coherent
state or thermal state -- resonant scattering between spin domain walls and
phonons takes place. This coherent and deterministic process, which is free
from disorder, leads to a reduction of the power-law exponent characterizing
the expansion of spin domains. Furthermore, the spin domain dynamics is
sensitive to the coherence properties of the atoms' vibrational state, such as
the relative phase of coherently superimposed Fock states. Even for a
translationally invariant initial state the latter manifests macroscopically in
a phase-sensitive asymmetric expansion.
Related papers
- Non-adiabatic couplings as a stabilization mechanism in long-range Rydberg molecules [0.0]
In alkaline Rydberg molecules, bound vibrational states exist even when these potential wells are disrupted by level repulsion.
By comparing the molecular states calculated within the Born-Oppenheimer approximation, we can assess the effects of non-adiabatic coupling on vibrational energies and lifetimes.
arXiv Detail & Related papers (2024-08-27T09:47:56Z) - Spin-self-organization in an optical cavity facilitated by inhomogeneous broadening [0.0]
We study the onset of collective spin-self-organization in a thermal ensemble of driven two-level atoms confined in an optical cavity.
We find that inhomogeneous Doppler broadening facilitates the onset of spin-self-organization.
arXiv Detail & Related papers (2024-07-29T05:03:53Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Realization of an extremely anisotropic Heisenberg magnet in Rydberg
atom arrays [4.209816265441194]
We employ a Rydberg quantum simulator to experimentally demonstrate strongly correlated spin transport in anisotropic Heisenberg magnets.
In our approach, the motion of magnons is controlled by an induced spin-exchange interaction through Rydberg dressing.
As the most prominent signature of a giant anisotropy, we show that nearby Rydberg excitations form distinct types of magnon bound states.
arXiv Detail & Related papers (2023-07-10T04:52:52Z) - Spin-phonon decoherence in solid-state paramagnetic defects from first
principles [79.4957965474334]
Paramagnetic defects in diamond and hexagonal boron nitride possess a unique combination of spin and optical properties that make them solid-state qubits.
Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available.
We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence.
arXiv Detail & Related papers (2022-12-22T13:48:05Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Phonon dressing of a facilitated one-dimensional Rydberg lattice gas [0.0]
We study the dynamics of a one-dimensional Rydberg lattice gas under facilitation conditions.
We analytically derive an effective Hamiltonian for the evolution of consecutive clusters of Rydberg excitations.
We show that the interaction between Rydberg excitations and lattice vibrations leads to the emergence of slowly decaying bound states.
arXiv Detail & Related papers (2021-04-22T16:29:56Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z) - Vibrational dressing in Kinetically Constrained Rydberg Spin Systems [0.0]
We discuss a facilitated spin system inspired by recent progress in the realization of Rydberg quantum simulators.
This platform allows to control and investigate the interplay between facilitation dynamics and the coupling of spin degrees of freedom to lattice vibrations.
We show that this leads to the formation of polaronic quasiparticles which are formed by many-body spin states dressed by phonons.
arXiv Detail & Related papers (2020-02-28T19:23:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.