Attack-Resilient Image Watermarking Using Stable Diffusion
- URL: http://arxiv.org/abs/2401.04247v2
- Date: Mon, 28 Oct 2024 15:02:34 GMT
- Title: Attack-Resilient Image Watermarking Using Stable Diffusion
- Authors: Lijun Zhang, Xiao Liu, Antoni Viros Martin, Cindy Xiong Bearfield, Yuriy Brun, Hui Guan,
- Abstract summary: We present ZoDiac, which uses a pre-trained stable diffusion model to inject a watermark into the trainable latent space.
We find that ZoDiac is robust against state-of-the-art watermark attacks, with a watermark detection rate above 98% and a false positive rate below 6.4%.
Our research demonstrates that stable diffusion is a promising approach to robust watermarking, able to withstand even stable-diffusion-based attack methods.
- Score: 24.40254115319263
- License:
- Abstract: Watermarking images is critical for tracking image provenance and proving ownership. With the advent of generative models, such as stable diffusion, that can create fake but realistic images, watermarking has become particularly important to make human-created images reliably identifiable. Unfortunately, the very same stable diffusion technology can remove watermarks injected using existing methods. To address this problem, we present ZoDiac, which uses a pre-trained stable diffusion model to inject a watermark into the trainable latent space, resulting in watermarks that can be reliably detected in the latent vector even when attacked. We evaluate ZoDiac on three benchmarks, MS-COCO, DiffusionDB, and WikiArt, and find that ZoDiac is robust against state-of-the-art watermark attacks, with a watermark detection rate above 98% and a false positive rate below 6.4%, outperforming state-of-the-art watermarking methods. We hypothesize that the reciprocating denoising process in diffusion models may inherently enhance the robustness of the watermark when faced with strong attacks and validate the hypothesis. Our research demonstrates that stable diffusion is a promising approach to robust watermarking, able to withstand even stable-diffusion--based attack methods. ZoDiac is open-sourced and available at https://github.com/zhanglijun95/ZoDiac.
Related papers
- ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization [15.570148419846175]
Existing watermarking methods face the challenge of balancing robustness and concealment.
This paper introduces a watermark hiding process to actively achieve concealment, thus allowing the embedding of stronger watermarks.
Experiments on various diffusion models demonstrate the watermark remains verifiable even under significant image tampering.
arXiv Detail & Related papers (2024-11-06T12:14:23Z) - Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models [10.726987194250116]
We introduce Shallow Diffuse, a new watermarking technique that embeds robust and invisible watermarks into diffusion model outputs.
Our theoretical and empirical analyses show that Shallow Diffuse greatly enhances the consistency of data generation and the detectability of the watermark.
arXiv Detail & Related papers (2024-10-28T14:51:04Z) - An undetectable watermark for generative image models [65.31658824274894]
We present the first undetectable watermarking scheme for generative image models.
In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric.
Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code.
arXiv Detail & Related papers (2024-10-09T18:33:06Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARK is a first-of-its-kind watermarking technique that enhances robustness through contrastive learning.
Our evaluation reveals that JIGMARK significantly surpasses existing watermarking solutions in resilience to diffusion-model edits.
arXiv Detail & Related papers (2024-06-06T03:31:41Z) - AquaLoRA: Toward White-box Protection for Customized Stable Diffusion Models via Watermark LoRA [67.68750063537482]
Diffusion models have achieved remarkable success in generating high-quality images.
Recent works aim to let SD models output watermarked content for post-hoc forensics.
We propose textttmethod as the first implementation under this scenario.
arXiv Detail & Related papers (2024-05-18T01:25:47Z) - Stable Signature is Unstable: Removing Image Watermark from Diffusion Models [1.656188668325832]
We propose a new attack to remove the watermark from a diffusion model by fine-tuning it.
Our results show that our attack can effectively remove the watermark from a diffusion model such that its generated images are non-watermarked.
arXiv Detail & Related papers (2024-05-12T03:04:48Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking technique that is both performance-lossless and training-free.
arXiv Detail & Related papers (2024-04-07T13:30:10Z) - Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space [7.082806239644562]
Existing methods face the dilemma of image quality and watermark robustness.
Watermarks with superior image quality usually have inferior robustness against attacks such as blurring and JPEG compression.
We propose Latent Watermark, which injects and detects watermarks in the latent diffusion space.
arXiv Detail & Related papers (2024-03-30T03:19:50Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
We analyze the robustness of various AI-image detectors including watermarking and deepfake detectors.
We show that watermarking methods are vulnerable to spoofing attacks where the attacker aims to have real images identified as watermarked ones.
arXiv Detail & Related papers (2023-09-29T18:30:29Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
This study examines how significantly watermarks impact the quality of model-generated outputs.
It is possible to integrate watermarks without affecting the output probability distribution.
The presence of watermarks does not compromise the performance of the model in downstream tasks.
arXiv Detail & Related papers (2023-09-22T12:46:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.