Optimization-Free Universal Watermark Forgery with Regenerative Diffusion Models
- URL: http://arxiv.org/abs/2506.06018v1
- Date: Fri, 06 Jun 2025 12:08:02 GMT
- Title: Optimization-Free Universal Watermark Forgery with Regenerative Diffusion Models
- Authors: Chaoyi Zhu, Zaitang Li, Renyi Yang, Robert Birke, Pin-Yu Chen, Tsung-Yi Ho, Lydia Y. Chen,
- Abstract summary: Watermarking can be used to verify the origin of synthetic images generated by artificial intelligence models.<n>Recent studies demonstrate the capability to forge watermarks from a target image onto cover images via adversarial techniques.<n>In this paper, we uncover a greater risk of an optimization-free and universal watermark forgery.<n>Our approach significantly broadens the scope of attacks, presenting a greater challenge to the security of current watermarking techniques.
- Score: 50.73220224678009
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Watermarking becomes one of the pivotal solutions to trace and verify the origin of synthetic images generated by artificial intelligence models, but it is not free of risks. Recent studies demonstrate the capability to forge watermarks from a target image onto cover images via adversarial optimization without knowledge of the target generative model and watermark schemes. In this paper, we uncover a greater risk of an optimization-free and universal watermark forgery that harnesses existing regenerative diffusion models. Our proposed forgery attack, PnP (Plug-and-Plant), seamlessly extracts and integrates the target watermark via regenerating the image, without needing any additional optimization routine. It allows for universal watermark forgery that works independently of the target image's origin or the watermarking model used. We explore the watermarked latent extracted from the target image and visual-textual context of cover images as priors to guide sampling of the regenerative process. Extensive evaluation on 24 scenarios of model-data-watermark combinations demonstrates that PnP can successfully forge the watermark (up to 100% detectability and user attribution), and maintain the best visual perception. By bypassing model retraining and enabling adaptability to any image, our approach significantly broadens the scope of forgery attacks, presenting a greater challenge to the security of current watermarking techniques for diffusion models and the authority of watermarking schemes in synthetic data generation and governance.
Related papers
- Gaussian Shading++: Rethinking the Realistic Deployment Challenge of Performance-Lossless Image Watermark for Diffusion Models [66.54457339638004]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.<n>We propose a diffusion model watermarking method tailored for real-world deployment.<n>Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness.
arXiv Detail & Related papers (2025-04-21T11:18:16Z) - SEAL: Semantic Aware Image Watermarking [26.606008778795193]
We propose a novel watermarking method that embeds semantic information about the generated image directly into the watermark.<n>The key pattern can be inferred from the semantic embedding of the image using locality-sensitive hashing.<n>Our results suggest that content-aware watermarks can mitigate risks arising from image-generative models.
arXiv Detail & Related papers (2025-03-15T15:29:05Z) - Safe-VAR: Safe Visual Autoregressive Model for Text-to-Image Generative Watermarking [18.251123923955397]
Autoregressive learning has become a dominant approach for text-to-image generation, offering high efficiency and visual quality.<n>Existing watermarking methods, designed for diffusion models, often struggle to adapt to the sequential nature of VAR models.<n>We propose Safe- VAR, the first watermarking framework specifically designed for autoregressive text-to-image generation.
arXiv Detail & Related papers (2025-03-14T11:45:10Z) - Dynamic watermarks in images generated by diffusion models [46.1135899490656]
High-fidelity text-to-image diffusion models have revolutionized visual content generation, but their widespread use raises significant ethical concerns.<n>We propose a novel multi-stage watermarking framework for diffusion models, designed to establish copyright and trace generated images back to their source.<n>Our work advances the field of AI-generated content security by providing a scalable solution for model ownership verification and misuse prevention.
arXiv Detail & Related papers (2025-02-13T03:23:17Z) - RoboSignature: Robust Signature and Watermarking on Network Attacks [0.5461938536945723]
We present a novel adversarial fine-tuning attack that disrupts the model's ability to embed the intended watermark.<n>Our findings emphasize the importance of anticipating and defending against potential vulnerabilities in generative systems.
arXiv Detail & Related papers (2024-12-22T04:36:27Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
We introduce a novel framework Towards Effective user Attribution for latent diffusion models via Watermark-Informed Blending (TEAWIB)<n> TEAWIB incorporates a unique ready-to-use configuration approach that allows seamless integration of user-specific watermarks into generative models.<n>Experiments validate the effectiveness of TEAWIB, showcasing the state-of-the-art performance in perceptual quality and attribution accuracy.
arXiv Detail & Related papers (2024-09-17T07:52:09Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking technique that is both performance-lossless and training-free.
arXiv Detail & Related papers (2024-04-07T13:30:10Z) - Wide Flat Minimum Watermarking for Robust Ownership Verification of GANs [23.639074918667625]
We propose a novel multi-bit box-free watermarking method for GANs with improved robustness against white-box attacks.
The watermark is embedded by adding an extra watermarking loss term during GAN training.
We show that the presence of the watermark has a negligible impact on the quality of the generated images.
arXiv Detail & Related papers (2023-10-25T18:38:10Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
We propose FT-Shield, a watermarking solution tailored for the fine-tuning of text-to-image diffusion models.
FT-Shield addresses copyright protection challenges by designing new watermark generation and detection strategies.
arXiv Detail & Related papers (2023-10-03T19:50:08Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.