Large Language Models for Robotics: Opportunities, Challenges, and
Perspectives
- URL: http://arxiv.org/abs/2401.04334v1
- Date: Tue, 9 Jan 2024 03:22:16 GMT
- Title: Large Language Models for Robotics: Opportunities, Challenges, and
Perspectives
- Authors: Jiaqi Wang, Zihao Wu, Yiwei Li, Hanqi Jiang, Peng Shu, Enze Shi,
Huawen Hu, Chong Ma, Yiheng Liu, Xuhui Wang, Yincheng Yao, Xuan Liu, Huaqin
Zhao, Zhengliang Liu, Haixing Dai, Lin Zhao, Bao Ge, Xiang Li, Tianming Liu,
and Shu Zhang
- Abstract summary: Large language models (LLMs) have undergone significant expansion and have been increasingly integrated across various domains.
For embodied tasks, where robots interact with complex environments, text-only LLMs often face challenges due to a lack of compatibility with robotic visual perception.
We propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.
- Score: 46.57277568357048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have undergone significant expansion and have
been increasingly integrated across various domains. Notably, in the realm of
robot task planning, LLMs harness their advanced reasoning and language
comprehension capabilities to formulate precise and efficient action plans
based on natural language instructions. However, for embodied tasks, where
robots interact with complex environments, text-only LLMs often face challenges
due to a lack of compatibility with robotic visual perception. This study
provides a comprehensive overview of the emerging integration of LLMs and
multimodal LLMs into various robotic tasks. Additionally, we propose a
framework that utilizes multimodal GPT-4V to enhance embodied task planning
through the combination of natural language instructions and robot visual
perceptions. Our results, based on diverse datasets, indicate that GPT-4V
effectively enhances robot performance in embodied tasks. This extensive survey
and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks
enriches the understanding of LLM-centric embodied intelligence and provides
forward-looking insights toward bridging the gap in Human-Robot-Environment
interaction.
Related papers
- A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Solving Robotics Problems in Zero-Shot with Vision-Language Models [0.0]
We introduce Wonderful Team, a multi-agent Vision Large Language Model (VLLM) framework designed to solve robotics problems in a zero-shot regime.
In our context, zero-shot means that for a novel environment, we provide a VLLM with an image of the robot's surroundings and a task description.
Our system showcases the ability to handle diverse tasks such as manipulation, goal-reaching, and visual reasoning -- all in a zero-shot manner.
arXiv Detail & Related papers (2024-07-26T21:18:57Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Look Before You Leap: Unveiling the Power of GPT-4V in Robotic
Vision-Language Planning [32.045840007623276]
We introduce Robotic Vision-Language Planning (ViLa), a novel approach for long-horizon robotic planning.
ViLa directly integrates perceptual data into its reasoning and planning process.
Our evaluation, conducted in both real-robot and simulated environments, demonstrates ViLa's superiority over existing LLM-based planners.
arXiv Detail & Related papers (2023-11-29T17:46:25Z) - Large Language Models for Robotics: A Survey [40.76581696885846]
Large language models (LLMs) possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots.
This review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning.
arXiv Detail & Related papers (2023-11-13T10:46:35Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
We tackle the problem of training a robot to understand multimodal prompts.
This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals.
We introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts.
arXiv Detail & Related papers (2023-10-14T22:24:58Z) - WALL-E: Embodied Robotic WAiter Load Lifting with Large Language Model [92.90127398282209]
This paper investigates the potential of integrating the most recent Large Language Models (LLMs) and existing visual grounding and robotic grasping system.
We introduce the WALL-E (Embodied Robotic WAiter load lifting with Large Language model) as an example of this integration.
We deploy this LLM-empowered system on the physical robot to provide a more user-friendly interface for the instruction-guided grasping task.
arXiv Detail & Related papers (2023-08-30T11:35:21Z) - Chat with the Environment: Interactive Multimodal Perception Using Large
Language Models [19.623070762485494]
Large Language Models (LLMs) have shown remarkable reasoning ability in few-shot robotic planning.
Our study demonstrates that LLMs can provide high-level planning and reasoning skills and control interactive robot behavior in a multimodal environment.
arXiv Detail & Related papers (2023-03-14T23:01:27Z) - PaLM-E: An Embodied Multimodal Language Model [101.29116156731762]
We propose embodied language models to incorporate real-world continuous sensor modalities into language models.
We train these encodings end-to-end, in conjunction with a pre-trained large language model, for multiple embodied tasks.
Our largest model, PaLM-E-562B with 562B parameters, is a visual-language generalist with state-of-the-art performance on OK-VQA.
arXiv Detail & Related papers (2023-03-06T18:58:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.