Solving Robotics Problems in Zero-Shot with Vision-Language Models
- URL: http://arxiv.org/abs/2407.19094v4
- Date: Fri, 11 Oct 2024 04:58:00 GMT
- Title: Solving Robotics Problems in Zero-Shot with Vision-Language Models
- Authors: Zidan Wang, Rui Shen, Bradly Stadie,
- Abstract summary: We introduce Wonderful Team, a multi-agent Vision Large Language Model (VLLM) framework designed to solve robotics problems in a zero-shot regime.
In our context, zero-shot means that for a novel environment, we provide a VLLM with an image of the robot's surroundings and a task description.
Our system showcases the ability to handle diverse tasks such as manipulation, goal-reaching, and visual reasoning -- all in a zero-shot manner.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Wonderful Team, a multi-agent Vision Large Language Model (VLLM) framework designed to solve robotics problems in a zero-shot regime. In our context, zero-shot means that for a novel environment, we provide a VLLM with an image of the robot's surroundings and a task description, and the VLLM outputs the sequence of actions necessary for the robot to complete the task. Unlike prior work that requires fine-tuning parts of the pipeline -- such as adjusting an LLM on robot-specific data or training separate vision encoders -- our approach demonstrates that with careful engineering, a single off-the-shelf VLLM can autonomously handle all aspects of a robotics task, from high-level planning to low-level location extraction and action execution. Crucially, compared to using GPT-4o alone, Wonderful Team is self-corrective and capable of iteratively fixing its own mistakes, enabling it to solve challenging long-horizon tasks. We validate our framework through extensive experiments, both in simulated environments using VIMABench and in real-world settings. Our system showcases the ability to handle diverse tasks such as manipulation, goal-reaching, and visual reasoning -- all in a zero-shot manner. These results underscore a key point: vision-language models have progressed rapidly in the past year and should be strongly considered as a backbone for many robotics problems moving forward.
Related papers
- Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - LLARVA: Vision-Action Instruction Tuning Enhances Robot Learning [50.99807031490589]
We introduce LLARVA, a model trained with a novel instruction tuning method to unify a range of robotic learning tasks, scenarios, and environments.
We generate 8.5M image-visual trace pairs from the Open X-Embodiment dataset in order to pre-train our model.
Experiments yield strong performance, demonstrating that LLARVA performs well compared to several contemporary baselines.
arXiv Detail & Related papers (2024-06-17T17:55:29Z) - MOKA: Open-World Robotic Manipulation through Mark-Based Visual Prompting [97.52388851329667]
We introduce Marking Open-world Keypoint Affordances (MOKA) to solve robotic manipulation tasks specified by free-form language instructions.
Central to our approach is a compact point-based representation of affordance, which bridges the VLM's predictions on observed images and the robot's actions in the physical world.
We evaluate and analyze MOKA's performance on various table-top manipulation tasks including tool use, deformable body manipulation, and object rearrangement.
arXiv Detail & Related papers (2024-03-05T18:08:45Z) - PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs [140.14239499047977]
Vision language models (VLMs) have shown impressive capabilities across a variety of tasks, from logical reasoning to visual understanding.
We propose a novel visual prompting approach for VLMs that we call Prompting with Iterative Visual Optimization (PIVOT)
We find, perhaps surprisingly, that our approach enables zero-shot control of robotic systems without any robot training data, navigation in a variety of environments, and other capabilities.
arXiv Detail & Related papers (2024-02-12T18:33:47Z) - InCoRo: In-Context Learning for Robotics Control with Feedback Loops [4.702566749969133]
InCoRo is a system that uses a classical robotic feedback loop composed of an LLM controller, a scene understanding unit, and a robot.
We highlight the generalization capabilities of our system and show that InCoRo surpasses the prior art in terms of the success rate.
This research paves the way towards building reliable, efficient, intelligent autonomous systems that adapt to dynamic environments.
arXiv Detail & Related papers (2024-02-07T19:01:11Z) - QUAR-VLA: Vision-Language-Action Model for Quadruped Robots [37.952398683031895]
The central idea is to elevate the overall intelligence of the robot.
We propose QUAdruped Robotic Transformer (QUART), a family of VLA models to integrate visual information and instructions from diverse modalities as input.
Our approach leads to performant robotic policies and enables QUART to obtain a range of emergent capabilities.
arXiv Detail & Related papers (2023-12-22T06:15:03Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Vision-Language Foundation Models as Effective Robot Imitators [48.73027330407576]
We derive a vision-language manipulation framework, dubbed RoboFlamingo, built upon the open-source VLMs, OpenFlamingo.
By exceeding the state-of-the-art performance with a large margin on the tested benchmark, we show RoboFlamingo can be an effective and competitive alternative to adapt VLMs to robot control.
arXiv Detail & Related papers (2023-11-02T16:34:33Z) - RoboLLM: Robotic Vision Tasks Grounded on Multimodal Large Language
Models [4.4173427917548524]
Multimodal Large Language Models (MLLMs) have emerged as novel backbones for various downstream tasks.
We introduce the RoboLLM framework, equipped with a BEiT-3 backbone, to address all visual perception tasks in the ARMBench challenge.
arXiv Detail & Related papers (2023-10-16T09:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.