Chain-of-Table: Evolving Tables in the Reasoning Chain for Table
Understanding
- URL: http://arxiv.org/abs/2401.04398v2
- Date: Fri, 19 Jan 2024 01:05:05 GMT
- Title: Chain-of-Table: Evolving Tables in the Reasoning Chain for Table
Understanding
- Authors: Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos,
Vincent Perot, Zifeng Wang, Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang,
Chen-Yu Lee, Tomas Pfister
- Abstract summary: We propose the Chain-of-Table framework, where tabular data is explicitly used in the reasoning chain as a proxy for intermediate thoughts.
Chain-of-Table achieves new state-of-the-art performance on WikiTQ, FeTaQA, and TabFact benchmarks.
- Score: 79.9461269253121
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Table-based reasoning with large language models (LLMs) is a promising
direction to tackle many table understanding tasks, such as table-based
question answering and fact verification. Compared with generic reasoning,
table-based reasoning requires the extraction of underlying semantics from both
free-form questions and semi-structured tabular data. Chain-of-Thought and its
similar approaches incorporate the reasoning chain in the form of textual
context, but it is still an open question how to effectively leverage tabular
data in the reasoning chain. We propose the Chain-of-Table framework, where
tabular data is explicitly used in the reasoning chain as a proxy for
intermediate thoughts. Specifically, we guide LLMs using in-context learning to
iteratively generate operations and update the table to represent a tabular
reasoning chain. LLMs can therefore dynamically plan the next operation based
on the results of the previous ones. This continuous evolution of the table
forms a chain, showing the reasoning process for a given tabular problem. The
chain carries structured information of the intermediate results, enabling more
accurate and reliable predictions. Chain-of-Table achieves new state-of-the-art
performance on WikiTQ, FeTaQA, and TabFact benchmarks across multiple LLM
choices.
Related papers
- H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
This paper introduces a novel algorithm that integrates both symbolic and semantic (textual) approaches in a two-stage process to address limitations.
Our experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three question-answering (QA) and fact-verification datasets.
arXiv Detail & Related papers (2024-06-29T21:24:19Z) - NormTab: Improving Symbolic Reasoning in LLMs Through Tabular Data Normalization [6.253771639590562]
We introduce NormTab, a framework aimed at enhancing the symbolic reasoning performance of Large Language Models (LLMs) by normalizing web tables.
We study table normalization as a stand-alone, one-time preprocessing step using LLMs to support symbolic reasoning on tabular data.
Our experimental evaluation, conducted on challenging web table datasets such as WikiTableQuestion and TabFact, demonstrates that leveraging NormTab significantly improves symbolic reasoning performance.
arXiv Detail & Related papers (2024-06-25T22:40:03Z) - CABINET: Content Relevance based Noise Reduction for Table Question
Answering [21.899938933558396]
CABINET (Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering) is a framework to enable Large Language Models (LLMs) to focus on relevant data by suppressing extraneous information.
It is more robust to derive noise, maintains outperformance on tables of varying sizes, and establishes new SoTA performance on WikiTQ, FeTaQA, and Wiki datasets.
arXiv Detail & Related papers (2024-02-02T05:48:39Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - Large Language Models are Versatile Decomposers: Decompose Evidence and
Questions for Table-based Reasoning [45.013230888670435]
We exploit large language models (LLMs) as decomposers for effective table-based reasoning.
We decompose huge evidence (a huge table) into sub-evidence (a small table) to mitigate the interference of useless information.
We propose a "parsing-execution-filling" strategy to alleviate the dilemma of the chain of thought.
arXiv Detail & Related papers (2023-01-31T17:51:45Z) - ReasTAP: Injecting Table Reasoning Skills During Pre-training via
Synthetic Reasoning Examples [15.212332890570869]
We develop ReasTAP to show that high-level table reasoning skills can be injected into models during pre-training without a complex table-specific architecture design.
ReasTAP achieves new state-of-the-art performance on all benchmarks and delivers a significant improvement on low-resource setting.
arXiv Detail & Related papers (2022-10-22T07:04:02Z) - Reasoning over Hybrid Chain for Table-and-Text Open Domain QA [69.8436986668218]
We propose a ChAin-centric Reasoning and Pre-training framework (CARP)
CARP utilizes hybrid chain to model the explicit intermediate reasoning process across table and text for question answering.
We also propose a novel chain-centric pre-training method, to enhance the pre-trained model in identifying the cross-modality reasoning process.
arXiv Detail & Related papers (2022-01-15T16:11:55Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.