H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables
- URL: http://arxiv.org/abs/2407.05952v2
- Date: Wed, 30 Oct 2024 23:44:31 GMT
- Title: H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables
- Authors: Nikhil Abhyankar, Vivek Gupta, Dan Roth, Chandan K. Reddy,
- Abstract summary: This paper introduces a novel algorithm that integrates both symbolic and semantic (textual) approaches in a two-stage process to address limitations.
Our experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three question-answering (QA) and fact-verification datasets.
- Score: 56.73919743039263
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Tabular reasoning involves interpreting natural language queries about tabular data, which presents a unique challenge of combining language understanding with structured data analysis. Existing methods employ either textual reasoning, which excels in semantic interpretation but struggles with mathematical operations, or symbolic reasoning, which handles computations well but lacks semantic understanding. This paper introduces a novel algorithm H-STAR that integrates both symbolic and semantic (textual) approaches in a two-stage process to address these limitations. H-STAR employs: (1) step-wise table extraction using `multi-view' column retrieval followed by row extraction, and (2) adaptive reasoning that adapts reasoning strategies based on question types, utilizing semantic reasoning for direct lookup and complex lexical queries while augmenting textual reasoning with symbolic reasoning support for quantitative and logical tasks. Our extensive experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three tabular question-answering (QA) and fact-verification datasets, underscoring its effectiveness and efficiency.
Related papers
- Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning [44.84219266082269]
Large Language Models (LLMs) excel at reasoning and planning when trained on chainof-thought (CoT) data.
We propose a hybrid representation of the reasoning process, where we partially abstract away the initial reasoning steps using latent discrete tokens.
arXiv Detail & Related papers (2025-02-05T15:33:00Z) - NAVER: A Neuro-Symbolic Compositional Automaton for Visual Grounding with Explicit Logic Reasoning [22.60247555240363]
This paper explores challenges for methods that require reasoning like human cognition.
We propose NAVER, a compositional visual grounding method that integrates explicit probabilistic logic reasoning.
Our results show that NAVER achieves SoTA performance comparing to recent end-to-end and compositional baselines.
arXiv Detail & Related papers (2025-02-01T09:19:08Z) - Path-of-Thoughts: Extracting and Following Paths for Robust Relational Reasoning with Large Language Models [62.12031550252253]
We present Path-of-Thoughts (PoT), a novel framework designed to tackle relation reasoning.
PoT efficiently extracts a task-agnostic graph that identifies crucial entities, relations, and attributes within the problem context.
PoT identifies relevant reasoning chains within the graph corresponding to the posed question, facilitating inference of potential answers.
arXiv Detail & Related papers (2024-12-23T20:27:12Z) - Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension [9.67774998354062]
Previous research has primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation.
We propose a Premise-Oriented Data Augmentation (PODA) framework to generate CoT rationales including analyses for both correct and incorrect options.
We also introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples.
arXiv Detail & Related papers (2024-09-22T15:44:43Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - HPE:Answering Complex Questions over Text by Hybrid Question Parsing and
Execution [92.69684305578957]
We propose a framework of question parsing and execution on textual QA.
The proposed framework can be viewed as a top-down question parsing followed by a bottom-up answer backtracking.
Our experiments on MuSiQue, 2WikiQA, HotpotQA, and NQ show that the proposed parsing and hybrid execution framework outperforms existing approaches in supervised, few-shot, and zero-shot settings.
arXiv Detail & Related papers (2023-05-12T22:37:06Z) - Suggesting Relevant Questions for a Query Using Statistical Natural
Language Processing Technique [0.0]
Suggesting similar questions for a user query has many applications ranging from reducing search time of users on e-commerce websites, training of employees in companies to holistic learning for students.
The use of Natural Language Processing techniques for suggesting similar questions is prevalent over the existing architecture.
arXiv Detail & Related papers (2022-04-26T04:30:16Z) - MERIt: Meta-Path Guided Contrastive Learning for Logical Reasoning [63.50909998372667]
We propose MERIt, a MEta-path guided contrastive learning method for logical ReasonIng of text.
Two novel strategies serve as indispensable components of our method.
arXiv Detail & Related papers (2022-03-01T11:13:00Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
We study the challenge of analytical reasoning of text and introduce a new dataset consisting of questions from the Law School Admission Test from 1991 to 2016.
We analyze what knowledge understanding and reasoning abilities are required to do well on this task.
arXiv Detail & Related papers (2021-04-14T02:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.