i-Rebalance: Personalized Vehicle Repositioning for Supply Demand Balance
- URL: http://arxiv.org/abs/2401.04429v2
- Date: Tue, 2 Apr 2024 05:50:00 GMT
- Title: i-Rebalance: Personalized Vehicle Repositioning for Supply Demand Balance
- Authors: Haoyang Chen, Peiyan Sun, Qiyuan Song, Wanyuan Wang, Weiwei Wu, Wencan Zhang, Guanyu Gao, Yan Lyu,
- Abstract summary: We propose i-Rebalance, a personalized vehicle reposition technique with deep reinforcement learning (DRL)
i-Rebalance estimates drivers' decisions on accepting reposition recommendations through an on-field user study involving 99 real drivers.
Evaluation of real-world trajectory data shows that i-Rebalance improves driver acceptance rate by 38.07% and total driver income by 9.97%.
- Score: 11.720716530010323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ride-hailing platforms have been facing the challenge of balancing demand and supply. Existing vehicle reposition techniques often treat drivers as homogeneous agents and relocate them deterministically, assuming compliance with the reposition. In this paper, we consider a more realistic and driver-centric scenario where drivers have unique cruising preferences and can decide whether to take the recommendation or not on their own. We propose i-Rebalance, a personalized vehicle reposition technique with deep reinforcement learning (DRL). i-Rebalance estimates drivers' decisions on accepting reposition recommendations through an on-field user study involving 99 real drivers. To optimize supply-demand balance and enhance preference satisfaction simultaneously, i-Rebalance has a sequential reposition strategy with dual DRL agents: Grid Agent to determine the reposition order of idle vehicles, and Vehicle Agent to provide personalized recommendations to each vehicle in the pre-defined order. This sequential learning strategy facilitates more effective policy training within a smaller action space compared to traditional joint-action methods. Evaluation of real-world trajectory data shows that i-Rebalance improves driver acceptance rate by 38.07% and total driver income by 9.97%.
Related papers
- Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
Policy evaluation via Monte Carlo simulation is at the core of many MC Reinforcement Learning (RL) algorithms.
We propose as a quality index a surrogate of the mean squared error of a return estimator that uses trajectories of different lengths.
We present an adaptive algorithm called Robust and Iterative Data collection strategy Optimization (RIDO)
arXiv Detail & Related papers (2024-10-17T11:47:56Z) - Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online
Reinforcement Learning [71.02384943570372]
Family Offline-to-Online RL (FamO2O) is a framework that empowers existing algorithms to determine state-adaptive improvement-constraint balances.
FamO2O offers a statistically significant improvement over various existing methods, achieving state-of-the-art performance on the D4RL benchmark.
arXiv Detail & Related papers (2023-10-27T08:30:54Z) - Coalitional Bargaining via Reinforcement Learning: An Application to
Collaborative Vehicle Routing [49.00137468773683]
Collaborative Vehicle Routing is where delivery companies cooperate by sharing their delivery information and performing delivery requests on behalf of each other.
This achieves economies of scale and thus reduces cost, greenhouse gas emissions, and road congestion.
But which company should partner with whom, and how much should each company be compensated?
Traditional game theoretic solution concepts, such as the Shapley value or nucleolus, are difficult to calculate for the real-world problem of Collaborative Vehicle Routing.
arXiv Detail & Related papers (2023-10-26T15:04:23Z) - Can Agents Run Relay Race with Strangers? Generalization of RL to
Out-of-Distribution Trajectories [88.08381083207449]
We show the prevalence of emphgeneralization failure on controllable states from stranger agents.
We propose a novel method called Self-Trajectory Augmentation (STA), which will reset the environment to the agent's old states according to the Q function during training.
arXiv Detail & Related papers (2023-04-26T10:12:12Z) - Safe Reinforcement Learning for an Energy-Efficient Driver Assistance
System [1.8899300124593645]
Reinforcement learning (RL)-based driver assistance systems seek to improve fuel consumption via continual improvement of powertrain control actions.
In this paper, an exponential control barrier function (ECBF) is derived and utilized to filter unsafe actions proposed by an RL-based driver assistance system.
The proposed safe-RL scheme is trained and evaluated in car following scenarios where it is shown that it effectively avoids collision both during training and evaluation.
arXiv Detail & Related papers (2023-01-03T00:25:00Z) - Residual Policy Learning for Powertrain Control [2.064612766965483]
This paper outlines an active driver assistance approach that uses a residual policy learning (RPL) agent to provide residual actions to default power train controllers.
By implementing on a simulated commercial vehicle in various car-following scenarios, we find that the RPL agent quickly learns significantly improved policies compared to a baseline source policy.
arXiv Detail & Related papers (2022-12-15T04:22:21Z) - Towards More Efficient Shared Autonomous Mobility: A Learning-Based
Fleet Repositioning Approach [0.0]
This paper formulates SAMS fleet as a Markov Decision Process and presents a reinforcement learning-based repositioning (RLR) approach called integrated system-agent repositioning (ISR)
The ISR learns to respond to evolving demand patterns without explicit demand forecasting and to cooperate with optimization-based passenger-to-vehicle assignment.
Results demonstrate the RLR approaches' substantial reductions in passenger wait times, over 50%, relative to the JO approach.
arXiv Detail & Related papers (2022-10-16T23:30:46Z) - Deep Reinforcement Learning Aided Platoon Control Relying on V2X
Information [78.18186960475974]
The impact of Vehicle-to-Everything (V2X) communications on platoon control performance is investigated.
Our objective is to find the specific set of information that should be shared among the vehicles for the construction of the most appropriate state space.
More meritorious information is given higher priority in transmission, since including it in the state space has a higher probability in offsetting the negative effect of having higher state dimensions.
arXiv Detail & Related papers (2022-03-28T02:11:54Z) - Equilibrium Inverse Reinforcement Learning for Ride-hailing Vehicle
Network [1.599072005190786]
We formulate the problem of passenger-vehicle matching in a sparsely connected graph.
We propose an algorithm to derive an equilibrium policy in a multi-agent environment.
arXiv Detail & Related papers (2021-02-13T03:18:44Z) - Vehicular Cooperative Perception Through Action Branching and Federated
Reinforcement Learning [101.64598586454571]
A novel framework is proposed to allow reinforcement learning-based vehicular association, resource block (RB) allocation, and content selection of cooperative perception messages (CPMs)
A federated RL approach is introduced in order to speed up the training process across vehicles.
Results show that federated RL improves the training process, where better policies can be achieved within the same amount of time compared to the non-federated approach.
arXiv Detail & Related papers (2020-12-07T02:09:15Z) - A Distributed Model-Free Ride-Sharing Approach for Joint Matching,
Pricing, and Dispatching using Deep Reinforcement Learning [32.0512015286512]
We present a dynamic, demand aware, and pricing-based vehicle-passenger matching and route planning framework.
Our framework is validated using the New York City Taxi dataset.
Experimental results show the effectiveness of our approach in real-time and large scale settings.
arXiv Detail & Related papers (2020-10-05T03:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.