論文の概要: A Survey on Efficient Federated Learning Methods for Foundation Model Training
- arxiv url: http://arxiv.org/abs/2401.04472v3
- Date: Thu, 5 Sep 2024 20:11:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 20:43:32.707947
- Title: A Survey on Efficient Federated Learning Methods for Foundation Model Training
- Title(参考訳): 基礎モデル学習における効果的なフェデレーション学習手法の検討
- Authors: Herbert Woisetschläger, Alexander Isenko, Shiqiang Wang, Ruben Mayer, Hans-Arno Jacobsen,
- Abstract要約: フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
FLアプリケーションに対するパラメータ効率細調整(PEFT)の利点と欠点について論じる。
- 参考スコア(独自算出の注目度): 62.473245910234304
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients. However, new approaches to FL often discuss their contributions involving small deep-learning models only and focus on training full models on clients. In the wake of Foundation Models (FM), the reality is different for many deep learning applications. Typically, FMs have already been pre-trained across a wide variety of tasks and can be fine-tuned to specific downstream tasks over significantly smaller datasets than required for full model training. However, access to such datasets is often challenging. By its design, FL can help to open data silos. With this survey, we introduce a novel taxonomy focused on computational and communication efficiency, the vital elements to make use of FMs in FL systems. We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications, elaborate on the readiness of FL frameworks to work with FMs, and provide future research opportunities on how to evaluate generative models in FL as well as the interplay of privacy and PEFT.
- Abstract(参考訳): フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
しかし、FLに対する新しいアプローチは、小さなディープラーニングモデルにのみ関与する彼らの貢献について議論し、クライアントでフルモデルをトレーニングすることに集中することが多い。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
通常、FMはすでに様々なタスクで事前トレーニングされており、完全なモデルトレーニングよりもはるかに小さなデータセットで特定の下流タスクに微調整することができる。
しかし、そのようなデータセットへのアクセスは、しばしば困難である。
その設計上、FLはデータサイロを開くのに役立ちます。
本調査では,計算効率と通信効率に着目した新しい分類法を導入する。
我々は、FLアプリケーションにおけるパラメータ効率細調整(PEFT)の利点と欠点について論じ、FLフレームワークのFM対応性について詳しく検討し、FLにおける生成モデルの評価方法や、プライバシとPEFTの相互運用に関する今後の研究機会を提供する。
関連論文リスト
- Synergizing Foundation Models and Federated Learning: A Survey [23.416321895575507]
本稿では,フェデレートラーニング(FL)とファンデーションモデル(FM)の融合の可能性と課題について論じる。
FLは、さまざまな参加者からのデータ可用性の障壁を破る、共同学習パラダイムである。
プライバシを保護しながら、分散データセットを使用して、幅広いドメイン固有のタスクにFMをカスタマイズし、適応する有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-18T17:58:09Z) - Federated Distillation: A Survey [73.08661634882195]
Federated Learning (FL)は、個々のクライアントからプライベートトレーニングデータを共有せずに、モデルを協調的にトレーニングすることを目指している。
FLへの知識蒸留の統合が提案され、Federated Distillation(FD)と呼ばれるものを形成する。
FDはクライアントとサーバ間のより柔軟な知識伝達を可能にし、単なるモデルパラメータの共有を超越します。
論文 参考訳(メタデータ) (2024-04-02T03:42:18Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Learn From Model Beyond Fine-Tuning: A Survey [78.80920533793595]
Learn From Model (LFM) は、モデルインターフェースに基づいた基礎モデル(FM)の研究、修正、設計に焦点を当てている。
LFM技術の研究は、モデルチューニング、モデル蒸留、モデル再利用、メタラーニング、モデル編集の5つの分野に大別できる。
本稿では, LFM の観点から, FM に基づく現在の手法を概観する。
論文 参考訳(メタデータ) (2023-10-12T10:20:36Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
ファンデーションモデル(FM)は汎用人工知能(AI)モデルである。
現在、FMと連邦学習(FL)の相互作用の探索はまだ初期段階にある。
本稿では、FMが無線ネットワークよりもFLに適した範囲について検討し、その研究課題と機会について概観する。
論文 参考訳(メタデータ) (2023-10-06T04:13:10Z) - Conquering the Communication Constraints to Enable Large Pre-Trained Models in Federated Learning [18.12162136918301]
フェデレートラーニング(FL)は、ローカルデバイス上の生データに一元的にアクセスすることなく、モデルの協調的なトレーニングを可能にするための、有望なパラダイムとして登場した。
最近の最先端の事前訓練モデルでは、より能力が高くなっているが、パラメータも増えている。
FLにおけるこれらの強力で容易に利用できる事前学習モデルが、通信負荷を同時に軽減しつつ優れた性能を達成するためのソリューションを見つけることができるだろうか?
具体的には,FedPEFTの性能を,クライアントの安定性,データ分散,プライバシ設定の違いによって体系的に評価する。
論文 参考訳(メタデータ) (2022-10-04T16:08:54Z) - Federated Learning from Pre-Trained Models: A Contrastive Learning
Approach [43.893267526525904]
Federated Learning(FL)は、分散型クライアントがプライベートデータを共有せずに協調的に学習できる機械学習パラダイムである。
過剰な計算と通信要求は、現在のFLフレームワークに課題をもたらす。
本稿では、クライアントが複数の固定された事前学習モデルによって生成された表現を融合させることを共同で学習する軽量フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-21T03:16:57Z) - PromptFL: Let Federated Participants Cooperatively Learn Prompts Instead
of Models -- Federated Learning in Age of Foundation Model [23.916918530195826]
本稿では,新しいFLフレームワークであるPromptFLを提案する。
PromptFLは市販のFM、すなわちCLIPを、共有ソフトプロンプトを共同で訓練する分散クライアントに出荷する。
本稿では,PromptFLを広範囲な実験により実証的に分析し,システムの実現性,ユーザプライバシ,パフォーマンスの面でその優位性を示す。
論文 参考訳(メタデータ) (2022-08-24T15:50:58Z) - On the Importance and Applicability of Pre-Training for Federated
Learning [28.238484580662785]
我々は,連合学習のための事前学習を体系的に研究する。
事前学習はFLを改善するだけでなく,その精度のギャップを集中学習に埋めることもできる。
本論文は,FLに対する事前学習の効果を解明する試みとしてまとめる。
論文 参考訳(メタデータ) (2022-06-23T06:02:33Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
フェデレートラーニング(FL)は、複数の参加者が生データを共有せずに学習をコラボレーションするための分散ラーニングフレームワークを提供する。
本稿では, モデルサイズとロバスト性をその場でカスタマイズできる, 不均一な参加者のための新しいスプリット・ミクス・FL戦略を提案する。
論文 参考訳(メタデータ) (2022-03-18T04:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。