The Critique of Critique
- URL: http://arxiv.org/abs/2401.04518v2
- Date: Sat, 1 Jun 2024 17:52:14 GMT
- Title: The Critique of Critique
- Authors: Shichao Sun, Junlong Li, Weizhe Yuan, Ruifeng Yuan, Wenjie Li, Pengfei Liu,
- Abstract summary: We pioneer the critique of critique, termed MetaCritique, which builds specific quantification criteria.
We construct a meta-evaluation dataset covering 4 tasks involving human-written and LLM-generated critiques.
Experiments demonstrate that MetaCritique can achieve near-human performance.
- Score: 45.40025444461465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Critique, as a natural language description for assessing the quality of model-generated content, has played a vital role in the training, evaluation, and refinement of LLMs. However, a systematic method to evaluate the quality of critique is lacking. In this paper, we pioneer the critique of critique, termed MetaCritique, which builds specific quantification criteria. To achieve a reliable evaluation outcome, we propose Atomic Information Units (AIUs), which describe the critique in a more fine-grained manner. MetaCritique aggregates each AIU's judgment for the overall score. Moreover, MetaCritique delivers a natural language rationale for the intricate reasoning within each judgment. Lastly, we construct a meta-evaluation dataset covering 4 tasks across 16 public datasets involving human-written and LLM-generated critiques. Experiments demonstrate that MetaCritique can achieve near-human performance. Our study can facilitate future research in LLM critiques based on our following observations and released resources: (1) superior critiques judged by MetaCritique can lead to better refinements, indicating that it can potentially enhance the alignment of existing LLMs; (2) the leaderboard of critique models reveals that open-source critique models commonly suffer from factuality issues; (3) relevant code and data are publicly available at https://github.com/GAIR-NLP/MetaCritique to support deeper exploration; (4) an API at PyPI with the usage documentation in Appendix C allows users to assess the critique conveniently.
Related papers
- CriticAL: Critic Automation with Language Models [31.1575961776287]
CriticAL generates summary statistics that capture discrepancies between model predictions and data.
CriticAL reliably generates correct critiques without hallucinating incorrect ones.
arXiv Detail & Related papers (2024-11-10T20:41:35Z) - CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution [74.41064280094064]
textbfJudger-1 is the first open-source textbfall-in-one judge LLM.
CompassJudger-1 is a general-purpose LLM that demonstrates remarkable versatility.
textbfJudgerBench is a new benchmark that encompasses various subjective evaluation tasks.
arXiv Detail & Related papers (2024-10-21T17:56:51Z) - Training Language Models to Critique With Multi-agent Feedback [102.42751835338233]
MultiCritique pipeline improves critique ability of LLMs by utilizing multi-agent feedback.
pipeline aggregates high-quality critiques from multiple agents instead of a single model.
Our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models.
arXiv Detail & Related papers (2024-10-20T04:57:45Z) - Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models [92.66784679667441]
Prometheus 2 is a more powerful evaluator LM that closely mirrors human and GPT-4 judgements.
It is capable of processing both direct assessment and pairwise ranking formats grouped with a user-defined evaluation criteria.
On four direct assessment benchmarks and four pairwise ranking benchmarks, Prometheus 2 scores the highest correlation and agreement with humans and proprietary LM judges.
arXiv Detail & Related papers (2024-05-02T17:59:35Z) - CriticBench: Benchmarking LLMs for Critique-Correct Reasoning [26.45110574463893]
CriticBench is a benchmark designed to assess Large Language Models' abilities to critique and rectify their reasoning.
We evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning.
arXiv Detail & Related papers (2024-02-22T18:59:02Z) - CriticEval: Evaluating Large Language Model as Critic [110.29766259843453]
CriticEval is a novel benchmark designed to comprehensively and reliably evaluate critique ability of Large Language Models.
To ensure the comprehensiveness, CriticEval evaluates critique ability from four dimensions across nine diverse task scenarios.
To ensure the reliability, a large number of critiques are annotated to serve as references.
arXiv Detail & Related papers (2024-02-21T12:38:59Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instruct can acquire pointwise grading critiques with pseudo references and revise these critiques via multi-path prompting.
CritiqueLLM is empirically shown to outperform ChatGPT and all the open-source baselines.
arXiv Detail & Related papers (2023-11-30T16:52:42Z) - Critique Ability of Large Language Models [38.34144195927209]
This study explores the ability of large language models (LLMs) to deliver accurate critiques across various tasks.
We develop a benchmark called CriticBench, which comprises 3K high-quality natural language queries and corresponding model responses.
arXiv Detail & Related papers (2023-10-07T14:12:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.