Training Language Models to Critique With Multi-agent Feedback
- URL: http://arxiv.org/abs/2410.15287v1
- Date: Sun, 20 Oct 2024 04:57:45 GMT
- Title: Training Language Models to Critique With Multi-agent Feedback
- Authors: Tian Lan, Wenwei Zhang, Chengqi Lyu, Shuaibin Li, Chen Xu, Heyan Huang, Dahua Lin, Xian-Ling Mao, Kai Chen,
- Abstract summary: MultiCritique pipeline improves critique ability of LLMs by utilizing multi-agent feedback.
pipeline aggregates high-quality critiques from multiple agents instead of a single model.
Our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models.
- Score: 102.42751835338233
- License:
- Abstract: Critique ability, a meta-cognitive capability of humans, presents significant challenges for LLMs to improve. Recent works primarily rely on supervised fine-tuning (SFT) using critiques generated by a single LLM like GPT-4. However, these model-generated critiques often exhibit flaws due to the inherent complexity of the critique. Consequently, fine-tuning LLMs on such flawed critiques typically limits the model's performance and propagates these flaws into the learned model. To overcome these challenges, this paper proposes a novel data generation pipeline, named MultiCritique, that improves the critique ability of LLMs by utilizing multi-agent feedback in both the SFT and reinforcement learning (RL) stages. First, our data generation pipeline aggregates high-quality critiques from multiple agents instead of a single model, with crucial information as input for simplifying the critique. Furthermore, our pipeline improves the preference accuracy of critique quality through multi-agent feedback, facilitating the effectiveness of RL in improving the critique ability of LLMs. Based on our proposed MultiCritique data generation pipeline, we construct the MultiCritiqueDataset for the SFT and RL fine-tuning stages. Extensive experimental results on two benchmarks demonstrate: 1) the superior quality of our constructed SFT dataset compared to existing critique datasets; 2) additional improvements to the critique ability of LLMs brought by the RL stage. Notably, our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models, approaching the performance of advanced 70B LLMs and GPT-4. Codes, datasets and model weights will be publicly available.
Related papers
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
We introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions.
To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline.
Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback.
arXiv Detail & Related papers (2024-10-09T01:25:10Z) - Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic [48.94340387130627]
Critic-CoT is a framework that pushes LLMs toward System-2-like critic capability.
CoT reasoning paradigm and the automatic construction of distant-supervision data without human annotation.
Experiments on GSM8K and MATH demonstrate that our enhanced model significantly boosts task-solving performance.
arXiv Detail & Related papers (2024-08-29T08:02:09Z) - Learning to Refine with Fine-Grained Natural Language Feedback [81.70313509881315]
We propose looking at refinement with feedback as a composition of three distinct LLM competencies.
A key property of the proposed Detect, Critique, Refine ("DCR") method is that the step 2 critique model can give fine-grained feedback about errors.
We show that models of different capabilities benefit from refining with DCR on the task of improving factual consistency of document grounded summaries.
arXiv Detail & Related papers (2024-07-02T16:15:01Z) - Reinforcement Learning from Reflective Feedback (RLRF): Aligning and Improving LLMs via Fine-Grained Self-Reflection [24.435121488662897]
We propose a novel framework: Reinforcement Learning from Reflective Feedback (RLRF)
RLRF employs a self-reflection mechanism to systematically explore and refine LLM responses, then fine-tuning the models via a RL algorithm along with promising responses.
Our experiments across Just-Eval, Factuality, and Mathematical Reasoning demonstrate the efficacy and transformative potential of RLRF.
arXiv Detail & Related papers (2024-03-21T08:57:27Z) - CriticBench: Benchmarking LLMs for Critique-Correct Reasoning [26.45110574463893]
CriticBench is a benchmark designed to assess Large Language Models' abilities to critique and rectify their reasoning.
We evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning.
arXiv Detail & Related papers (2024-02-22T18:59:02Z) - Enhancing Large Language Model Performance To Answer Questions and
Extract Information More Accurately [2.1715455600756646]
Large Language Models (LLMs) generate responses to questions.
Their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions.
To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models.
arXiv Detail & Related papers (2024-01-27T00:18:07Z) - Towards Reliable and Fluent Large Language Models: Incorporating
Feedback Learning Loops in QA Systems [10.58737969057445]
We build a dataset to train a critic model capable of evaluating the citation, correctness, and fluency of responses generated by large language models.
We propose an automated feedback mechanism that leverages the critic model to offer real-time feedback on heterogeneous aspects of generated text.
Experimental results demonstrate the efficacy of our approach, including a 4% precision increase in citation and an approximately 8% enhancement in the MAUVE metric for fluency.
arXiv Detail & Related papers (2023-09-08T09:39:53Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.