Semi-Supervised Deep Sobolev Regression: Estimation and Variable Selection by ReQU Neural Network
- URL: http://arxiv.org/abs/2401.04535v2
- Date: Thu, 30 Jan 2025 00:56:47 GMT
- Title: Semi-Supervised Deep Sobolev Regression: Estimation and Variable Selection by ReQU Neural Network
- Authors: Zhao Ding, Chenguang Duan, Yuling Jiao, Jerry Zhijian Yang,
- Abstract summary: We propose SDORE, a Semi-supervised Deep Sobolev Regressor, for the nonparametric estimation of the underlying regression function and its gradient.
Our study includes a thorough analysis of the convergence rates of SDORE in $L2$-norm, achieving the minimax optimality.
- Score: 3.4623717820849476
- License:
- Abstract: We propose SDORE, a Semi-supervised Deep Sobolev Regressor, for the nonparametric estimation of the underlying regression function and its gradient. SDORE employs deep ReQU neural networks to minimize the empirical risk with gradient norm regularization, allowing the approximation of the regularization term by unlabeled data. Our study includes a thorough analysis of the convergence rates of SDORE in $L^{2}$-norm, achieving the minimax optimality. Further, we establish a convergence rate for the associated plug-in gradient estimator, even in the presence of significant domain shift. These theoretical findings offer valuable insights for selecting regularization parameters and determining the size of the neural network, while showcasing the provable advantage of leveraging unlabeled data in semi-supervised learning. To the best of our knowledge, SDORE is the first provable neural network-based approach that simultaneously estimates the regression function and its gradient, with diverse applications such as nonparametric variable selection. The effectiveness of SDORE is validated through an extensive range of numerical simulations.
Related papers
- Sparse deep neural networks for nonparametric estimation in high-dimensional sparse regression [4.983567824636051]
This study combines nonparametric estimation and parametric sparse deep neural networks for the first time.
As nonparametric estimation of partial derivatives is of great significance for nonlinear variable selection, the current results show the promising future for the interpretability of deep neural networks.
arXiv Detail & Related papers (2024-06-26T07:41:41Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains by processing through binary neural dynamic activations.
This paper proposes to leverage multiple compartments that sample independent spiking signals while sharing synaptic weights.
The key idea is to use these signals to obtain more accurate statistical estimates of the log-likelihood training criterion, as well as of its gradient.
arXiv Detail & Related papers (2021-02-05T16:39:42Z) - Estimation of the Mean Function of Functional Data via Deep Neural
Networks [6.230751621285321]
We propose a deep neural network method to perform nonparametric regression for functional data.
The proposed method is applied to analyze positron emission tomography images of patients with Alzheimer disease.
arXiv Detail & Related papers (2020-12-08T17:18:16Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
We propose an efficient neural network design for estimating measurement error models.
We use a fully connected feed-forward neural network to approximate the regression function $f(x)$.
We conduct an extensive numerical study to compare the neural network approach with classical nonparametric methods.
arXiv Detail & Related papers (2020-07-15T06:05:37Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Optimal Rates for Averaged Stochastic Gradient Descent under Neural
Tangent Kernel Regime [50.510421854168065]
We show that the averaged gradient descent can achieve the minimax optimal convergence rate.
We show that the target function specified by the NTK of a ReLU network can be learned at the optimal convergence rate.
arXiv Detail & Related papers (2020-06-22T14:31:37Z) - Learning Rates as a Function of Batch Size: A Random Matrix Theory
Approach to Neural Network Training [2.9649783577150837]
We study the effect of mini-batching on the loss landscape of deep neural networks using spiked, field-dependent random matrix theory.
We derive analytical expressions for the maximal descent and adaptive training regimens for smooth, non-Newton deep neural networks.
We validate our claims on the VGG/ResNet and ImageNet datasets.
arXiv Detail & Related papers (2020-06-16T11:55:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.