Statistically guided deep learning
- URL: http://arxiv.org/abs/2504.08489v1
- Date: Fri, 11 Apr 2025 12:36:06 GMT
- Title: Statistically guided deep learning
- Authors: Michael Kohler, Adam Krzyzak,
- Abstract summary: We present a theoretically well-founded deep learning algorithm for nonparametric regression.<n>We show that a theoretical analysis of deep learning which takes into account simultaneously optimization, generalization and approximation can result in a new deep learning estimate.
- Score: 10.619901778151336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a theoretically well-founded deep learning algorithm for nonparametric regression. It uses over-parametrized deep neural networks with logistic activation function, which are fitted to the given data via gradient descent. We propose a special topology of these networks, a special random initialization of the weights, and a data-dependent choice of the learning rate and the number of gradient descent steps. We prove a theoretical bound on the expected $L_2$ error of this estimate, and illustrate its finite sample size performance by applying it to simulated data. Our results show that a theoretical analysis of deep learning which takes into account simultaneously optimization, generalization and approximation can result in a new deep learning estimate which has an improved finite sample performance.
Related papers
- Optimization Insights into Deep Diagonal Linear Networks [10.395029724463672]
We study the implicit regularization properties of the gradient flow "algorithm" for estimating the parameters of a deep diagonal neural network.<n>Our main contribution is showing that this gradient flow induces a mirror flow dynamic on the model, meaning that it is biased towards a specific solution of the problem.
arXiv Detail & Related papers (2024-12-21T20:23:47Z) - Understanding Forgetting in Continual Learning with Linear Regression [21.8755265936716]
Continual learning, focused on sequentially learning multiple tasks, has gained significant attention recently.
We provide a general theoretical analysis of forgetting in the linear regression model via Gradient Descent.
We demonstrate that, given a sufficiently large data size, the arrangement of tasks in a sequence, where tasks with larger eigenvalues in their population data covariance matrices are trained later, tends to result in increased forgetting.
arXiv Detail & Related papers (2024-05-27T18:33:37Z) - Semi-Supervised Deep Sobolev Regression: Estimation and Variable Selection by ReQU Neural Network [3.4623717820849476]
We propose SDORE, a Semi-supervised Deep Sobolev Regressor, for the nonparametric estimation of the underlying regression function and its gradient.<n>Our study includes a thorough analysis of the convergence rates of SDORE in $L2$-norm, achieving the minimax optimality.
arXiv Detail & Related papers (2024-01-09T13:10:30Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
We show that the gradient of a model is a special case of a more general formulation using semirings.
This observation allows us to generalize the backpropagation algorithm to efficiently compute other interpretable statistics.
arXiv Detail & Related papers (2023-07-06T15:19:53Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
We present a new method to perform Neural Posterior Estimation (NPE) with a differentiable simulator.
We demonstrate how gradient information helps constrain the shape of the posterior and improves sample-efficiency.
arXiv Detail & Related papers (2022-07-12T16:08:04Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
We show that gradient descent can efficiently learn ball indicator functions using a depth 2 neural network with two layers of sigmoidal activations.
This is the first optimization-based separation result where the approximation benefits of the stronger architecture provably manifest in practice.
arXiv Detail & Related papers (2021-12-04T18:07:47Z) - Universal scaling laws in the gradient descent training of neural
networks [10.508187462682308]
We show that the learning trajectory can be characterized by an explicit bounds at large training times.
Our results are based on spectral analysis of the evolution of a large network trained on the expected loss.
arXiv Detail & Related papers (2021-05-02T16:46:38Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.