A Discrete Particle Swarm Optimizer for the Design of Cryptographic
Boolean Functions
- URL: http://arxiv.org/abs/2401.04567v1
- Date: Tue, 9 Jan 2024 14:08:42 GMT
- Title: A Discrete Particle Swarm Optimizer for the Design of Cryptographic
Boolean Functions
- Authors: Luca Mariot, Alberto Leporati, Luca Manzoni
- Abstract summary: The algorithm is a modified version of the permutation PSO by Hu, Eberhart and Shi.
The parameters for the PSO velocity equation are tuned by means of two meta-optimization techniques.
- Score: 1.6574413179773761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Particle Swarm Optimizer for the search of balanced Boolean functions with
good cryptographic properties is proposed in this paper. The algorithm is a
modified version of the permutation PSO by Hu, Eberhart and Shi which preserves
the Hamming weight of the particles positions, coupled with the Hill Climbing
method devised by Millan, Clark and Dawson to improve the nonlinearity and
deviation from correlation immunity of Boolean functions. The parameters for
the PSO velocity equation are tuned by means of two meta-optimization
techniques, namely Local Unimodal Sampling (LUS) and Continuous Genetic
Algorithms (CGA), finding that CGA produces better results. Using the
CGA-evolved parameters, the PSO algorithm is then run on the spaces of Boolean
functions from $n=7$ to $n=12$ variables. The results of the experiments are
reported, observing that this new PSO algorithm generates Boolean functions
featuring similar or better combinations of nonlinearity, correlation immunity
and propagation criterion with respect to the ones obtained by other
optimization methods.
Related papers
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
We show that vanilla and constrained BO algorithms are inefficient when optimising invariant objectives.
We derive a bound on the maximum information gain of these invariant kernels.
We use our method to design a current drive system for a nuclear fusion reactor, finding a high-performance solution.
arXiv Detail & Related papers (2024-10-22T12:51:46Z) - Optimizing Unitary Coupled Cluster Wave Functions on Quantum Hardware: Error Bound and Resource-Efficient Optimizer [0.0]
We study the projective quantum eigensolver (PQE) approach to optimizing unitary coupled cluster wave functions on quantum hardware.
The algorithm uses projections of the Schr"odinger equation to efficiently bring the trial state closer to an eigenstate of the Hamiltonian.
We present numerical evidence of superiority over both the optimization introduced in arXiv:2102.00345 and VQE optimized using the Broyden Fletcher Goldfarb Shanno (BFGS) method.
arXiv Detail & Related papers (2024-10-19T15:03:59Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - An Algebraically Converging Stochastic Gradient Descent Algorithm for
Global Optimization [14.336473214524663]
A key component in the algorithm is the randomness based on the value of the objective function.
We prove the convergence of the algorithm with an algebra and tuning in the parameter space.
We present several numerical examples to demonstrate the efficiency and robustness of the algorithm.
arXiv Detail & Related papers (2022-04-12T16:27:49Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Evolutionary Construction of Perfectly Balanced Boolean Functions [7.673465837624365]
We investigate the use of Genetic Programming (GP) and Genetic Algorithms (GA) to construct Boolean functions that satisfy a property, perfect balancedness, along with a good nonlinearity profile.
Surprisingly, the results show that GA with the weightwise balanced representation outperforms GP with the classical truth table phenotype in finding highly nonlinear WPB functions.
arXiv Detail & Related papers (2022-02-16T18:03:04Z) - Bayesian Optimization over Permutation Spaces [30.650753803587794]
We propose and evaluate two algorithms for BO over Permutation Spaces (BOPS)
We theoretically analyze the performance of BOPS-T to show that their regret grows sub-linearly.
Our experiments on multiple synthetic and real-world benchmarks show that both BOPS-T and BOPS-H perform better than the state-of-the-art BO algorithm for spaces.
arXiv Detail & Related papers (2021-12-02T08:20:50Z) - Noisy Bayesian optimization for variational quantum eigensolvers [0.0]
The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm used to find the ground state of a Hamiltonian.
This work proposes an implementation of GPR and BO specifically tailored to perform VQE on quantum computers already available today.
arXiv Detail & Related papers (2021-12-01T11:28:55Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Hardness of Random Optimization Problems for Boolean Circuits,
Low-Degree Polynomials, and Langevin Dynamics [78.46689176407936]
We show that families of algorithms fail to produce nearly optimal solutions with high probability.
For the case of Boolean circuits, our results improve the state-of-the-art bounds known in circuit complexity theory.
arXiv Detail & Related papers (2020-04-25T05:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.